UNIVERSIDAD DE GUAYAQUIL
FACULTAD DE CIENCIAS AGRARIAS
SEMINARIO DE GRADUACION

TEMA

"Estudio de eficiencia nutricional de Nitrógeno utilizando varias fuentes de fertilizantes y de revestimiento, en frijol (Phaseolus vulgaris L.) variedad INIAP 473-Boliche"

TESINA

Presentada ante el H. Consejo Directivo como requisito previo para optar el título de

INGENIERO AGRONOMO

AUTORES: Claudia Lorena Alzate Montoya
Clipton Washington Valencia Andachi

TUTOR: Ing Agr Eduardo Jarrín Ruiz, M Sc.

Guayaquil – Ecuador

2.009
UNIVERSIDAD DE GUAYAQUIL
FACULTAD DE CIENCIAS AGRARIAS
SEMINARIO DE GRADUACION

TEMA

“Estudio de eficiencia nutricional de Nitrógeno utilizando varias fuentes de fertilizantes y de revestimiento, en frijol (Phaseolus vulgaris L.) variedad INIAP 473-Boliche”

TESINA

Presentada ante el H. Consejo Directivo como requisito previo para optar el título de

INGENIERO AGRONOMO

tribunal examinador

APROBADA...

... ...

Ing. Agr. Gastón Sarmiento M.g.Ed

... ...

EXAMINADOR

Ing. Agr. Gonzalo Almagro M.Sc

... ...

EXAMINADOR

Ing. Agr. Eduardo Jarrín R. M.Sc

Guayaquil – Ecuador

2009
AGRADECIMIENTO

Los autores agradecen a las siguientes instituciones y personas que colaboraron en los trabajos de investigación y elaboración de la presente tesina:

- Universidad de Guayaquil, Facultad de Ciencias Agrarias.

- Personal Docente y Administrativo del Seminario de Graduación de la Facultad de Ciencias Agrarias de la Universidad de Guayaquil.

- Ing. Agr. Eduardo Jarrín R. MSc, Tutor de la Tesina, por su acertada Dirección.

- Ing. Manuel Veintimilla L., Catedrático de Técnicas de Comunicación, por supervisar la Redacción Técnica de esta Tesina.

- A todas las personas que brindaron su apoyo para el éxito de esta investigación.
La responsabilidad por las investigaciones resultados, conclusiones y recomendaciones, presentadas en esta tesis; pertenecen exclusivamente a los autores.

Claudia Lorena Alzate Montoya

Clifton Washington Valencia Andachi
C O N T E N I D O

<table>
<thead>
<tr>
<th>C A P I T U L O</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introducción</td>
<td>1</td>
</tr>
<tr>
<td>Objetivos</td>
<td>3</td>
</tr>
<tr>
<td>Metodología</td>
<td>3</td>
</tr>
<tr>
<td>II. Desarrollo</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Marco Teórico</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Metodología aplicada</td>
<td>11</td>
</tr>
<tr>
<td>2.3. Trabajos efectuados</td>
<td>12</td>
</tr>
<tr>
<td>2.4. Resultados</td>
<td>17</td>
</tr>
<tr>
<td>2.5. Análisis y Discusión</td>
<td>29</td>
</tr>
<tr>
<td>III. Conclusiones</td>
<td>30</td>
</tr>
<tr>
<td>IV. Literatura Consultada</td>
<td>31</td>
</tr>
<tr>
<td>V. Anexos</td>
<td>33</td>
</tr>
</tbody>
</table>
II. INTRODUCCION

El frijol común (Phaseolus vulgaris L.) es una de las leguminosas más importantes en América Latina, por ser fuente importante de proteínas (21%) y componente común en la dieta alimenticia de la población de escasos recursos económicos.

En Ecuador lo cultivan pequeños agricultores en áreas reducidas y dispersas, en una superficie total de 53.370 has, con una producción de 29.129 toneladas, y rendimiento promedio de 0.55 Ton/ha.

Los bajos rendimientos obtenidos en este cultivo se deben a numerosas limitaciones durante su proceso de crecimiento, donde factores negativos como problemas edáficos y climáticos, enfermedades, plagas y prácticas agronómicas deficientes, contribuyen a aumentar la diferencia entre rendimientos potenciales y reales.

Entre las prácticas agronómicas, la nutrición de las plantas es fundamental para lograr su normal desarrollo y alcanzar rendimientos elevados por unidad de superficie, siendo los fertilizantes uno de los factores más relevantes para incrementar la producción agrícola. Aplicando dosis correctas del nutriente que aporta el fertilizante, el cultivo se vuelve más verde y sano, crece con mayor rapidez y aumenta su rendimiento.

El Nitrógeno es uno de los nutrientes más importantes porque favorece el crecimiento vegetativo, imparte color verde a las hojas, las mismas que adquieren gran desarrollo, ayudando a su acción fotosintética. La cantidad de nitrógeno necesaria para que un cultivo alcance su máxima producción depende del cultivar y de las condiciones del cultivo.

Fuente: FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación.) 2.001
Sí bien, la planta de frijol tiene la capacidad de incorporar nitrógeno atmosférico en el subsuelo por fijación simbiótica a través de la bacteria Rhizobium phaseolorum, dependiendo de las condiciones de clima, suelo y manejo; por lo general el nitrógeno disponible para los requerimientos de esta planta, no satisface dichas necesidades a lo largo de su proceso de desarrollo.

Por otra parte, se ha comprobado que gran parte del nitrógeno aportado por el abono no se recupera con la cosecha, debido principalmente a pérdidas por filtración en el suelo, así como también pérdidas por volatilización y por fijación de amoníaco en el suelo; por lo que una alternativa para solucionar dichas pérdidas es el aporte de menores cantidades de fertilizantes con mayor frecuencia, o el empleo de fertilizantes de liberación lenta.

Chien, Gearhart y Collamer 2001, sostienen que cuando es necesario decidir qué fuente de fertilizante conviene utilizar, es importante considerar entre otros aspectos, las características del suelo a cultivar y las reacciones y transformaciones de los fertilizantes. Algunas fuentes de fertilizantes nitrogenados como los amoniacales, generan un residuo que provoca cierta acidez al suelo; sin embargo no se puede generalizar sobre este efecto en todos los suelos. Normalmente, la capacidad amortiguadora de los suelos arcillosos hace que la acidez inducida por fuentes como urea, sulfato de amonio y nitrato de amonio; sea menor, particularmente en el caso del sulfato de amonio.

Con estos antecedentes, los autores del presente trabajo justificaron su ejecución, cuyos resultados permitirá disponer de nuevos conocimientos tecnológicos sobre el manejo de fertilizantes nitrogenados recubiertos de varios productos, a fin de ganar eficiencia en la nutrición del cultivo de frijol, en beneficio de los productores agrícolas de la región.
OBJETIVOS

1. Determinar la eficiencia agronómica de recuperación de nitrógeno utilizando urea revestida y varias fuentes de fertilizantes nitrogenados.

2. Identificar el tratamiento más apropiado.

3. Análisis económico.

MÉTODOLOGIA

En la presente investigación se aplicaron los siguientes procedimientos metodológicos:

- Investigación documental.

- Documentación electrónica vía Internet.

- Métodos teóricos: Inductivo-Deductivo y Análisis-Síntesis.

- Método práctico: Experimental.

- Análisis en Laboratorio.
II. DESARROLLO

2.1. MARCO TEORICO

López y Espinoza 1.995 señalan, que el adecuado suministro de nutrientes a través de la fertilización, es necesario para obtener el máximo rendimiento, pero esta práctica por sí sola no es una garantía de cosechas abundantes. Este sencillo pero importante concepto se basa en el hecho de que existe una gran cantidad de factores que regulan el crecimiento y desarrollo de las plantas. La magnitud y combinación de estos factores determina la magnitud del rendimiento. Los factores que afectan el crecimiento y producción de las plantas se clasifican en factores internos (genéticos) y factores externos (ambientales), encontrándose en estos últimos la intervención humana que afecta o modifica en cierta medida algunos factores ambientales.

TOA 1.998 indica, que los fertilizantes, estiércolos o residuos de cultivos se aplican al suelo para incrementar el aporte de nutrientes de las plantas. Las plantas pueden utilizar los nutrientes o bien de fuentes orgánicas (estiércolos o residuos de cultivos) o inorgánicas (minerales del suelo, fertilizantes o cenizas).

Ingeniería de procesos químicos 2.008 (en línea) manifiesta, que el nitrógeno es requerido por las plantas para la formación de proteínas. Para ello lo absorbe del suelo en la forma de ión nitrato en su mayoría y también como amonio, para luego transformarlo en moléculas orgánicas nitrogenadas como aminoácidos y proteínas para el desarrollo del tejido vegetal. Prácticamente todos los tipos de suelos son deficitarios en nitrógeno, por lo que el suministro de fertilizantes nitrogenados es una necesidad, muy extendida, para aquellos terrenos donde se necesite incrementar su productividad. Los productos con capacidad de fertilizar con nitrógeno, son del tipo orgánico, tales como la urea y el guano, y de tipo inorgánico, basados en sales amoniacales y nitratos.
Suquilanda 1.995 dice, que el nitrógeno es muy soluble en el agua del suelo y es solo parcialmente retenido por las partículas de éste. Se pierde fácilmente por lixiviación (percolación). Las funciones del nitrógeno son las siguientes:

- **Imparte un color verde intenso a las plantas.**
- **Fomenta el crecimiento rápido de las plantas.**
- **Aumenta la producción de hojas.**
- **Mejora la calidad de las verduras de hojas.**
- **Aumenta el contenido proteínico en los cultivos de alimentos, forrajes y pastizales.**
- **Alimenta a los microorganismos del suelo y favorece la descomposición de la materia orgánica fresca.**
- **Si se suministra balanceado con respecto a otros nutrientes, puede retardar la floración y fructificación; y favorecer su susceptibilidad al ataque de insectos-plaga y enfermedades.**

TOA 1.998 señala, como principales síntomas de deficiencia de nitrógeno en las plantas a los siguientes aspectos:

- **Plantas poco sanas y pequeñas.**
- **Hojas especialmente pequeñas y de color verde pálido o amarillento.**
- **Hojas inferiores aparentes quemadas y con muerte prematura, en tanto que la sumidad de la planta presenta un color verde (que a veces se confunde con falta de humedad).**
- **Rendimientos bajos.**

Según Wikipedia 2.009 (en línea), fertilizante nitrogenado es un fertilizante con alto grado de nitrógeno, que por lo general manejan entre un 30 y 60 % según el cultivo para el cual se aplique; y la función que ejerce es proporcionarle el nutriente a la planta en una edad temprana cuando por su escaso follaje no lo puede obtener del suelo y del ambiente, o posteriormente para su supervivencia.
Para TOA 1.998, los fertilizantes pueden tener casi cualquier color. Su color depende de los nutrientes que contiene y de su fabricación. También pueden añadirse materiales (acondicionadores) que ayudan al fertilizante a prevenir la absorción de la humedad y la formación de terrones, o pueden utilizarse pigmentos para distinguir diferentes clases de fertilizantes. Todo esto influye en su color. Las partículas de fertilizantes pueden ser de diferente tamaño y forma. Pueden presentarse en forma de granos grandes y pequeños, perdigones, cristales, o polvo grueso fino. Generalmente son sólidos pero pueden ser disueltos para aplicarlos en forma líquida.

Ingeniería de procesos químicos 2.008 (en línea), menciona las características de los siguientes productos nitrogenados:

Urea (CO(NH2)2). Es un producto orgánico, constituyendo así un fertilizante de muy alto contenido de N amoniaco (45-46 % aproximado), cuya forma prelada permite una aplicación directa. Es el fertilizante nitrogenado líder en el mercado, por su bajo costo por unidad de nitrógeno, gracias a que se obtiene en el proceso de síntesis del amoníaco y anhídrido carbónico bajo condiciones de alta temperatura y presión. Al ser aplicada en el suelo, se produce una hidrólisis enzimática transformándose en carbonato de amonio actuando como fertilizante amoniaco y luego se transforma rápidamente a formas nítricas.

Sulfato de amonio (NH4)2SO4. Es un fertilizante nitrogenado (20,5 % de N contenido aproximado) útil en suelos deficiarios en azufre. Es una sal microcristalina, generalmente incluida en mezclas de fertilizantes. Se obtiene principalmente como subproducto en procesos siderúrgicos y también en forma sintética. Es uno de los fertilizantes con mayor efecto acidificante.

Nitrito de amonio (NH4NO3). Es un fertilizante de alto contenido de N (33 % aproximado), que se usa en forma prelada (gránulos redondos). Por ser higroscópico, es tratado con caolín para evitar su aglomeración. Su manejo debe ser cuidadoso por riesgo de incendio y explosión. También puede ser mezclado con caliza en proporción de 3:2 (nitrito de amonio y calcio). La reacción en el suelo puede ser neutra o alcalina.
Amoniaco (NH₃)*. En forma anhidrita (82% de Nitrógeno aproximado) o en solución acuosa (25% de Nitrógeno aproximado), se aplica directamente al suelo a una profundidad de 15 cm, como un líquido de alta presión, luego de lo cual se difunde por el suelo húmedo o es absorbido en los coloides de este. En solución, puede ser aplicado a través de las aguas de riego. Produce un efecto acidificante en el suelo, al igual que todos los restantes fertilizantes amoniacales, a causa del proceso de nitrificación.

Happy florer s.f. (en línea) positiva, que el Sulfato de Amonio es un fertilizante de solubilidad rápida. Su formulación básica es a base de Nitrógeno, cuyas características principales son

- Corrige los suelos alcalinos dándoles mayor acidez
- Promueve el crecimiento de cualquier tipo de planta.
- Corrige el amarillamiento cuando este fenómeno se dé por falta de Nitrógeno.
- Alimenta a los microorganismos del suelo que promueven el proceso de nutrición de las plantas.

Soca 2.002 indica, que la Zeolita no cumple la función de fertilizante, pero lo potencializa al ser un mineral insoluble que atrapa los nutrientes y los pone al alcance de la planta, el cual evita que por efecto del sol, exceso de agua y características adversas del suelo, la formulación de N, P, K, entre otros elementos suministrados se pierdan en buen porcentaje o se fijen antes de asimilarlos la raíz. Los elementos contenidos en el suelo también logran mejor movimiento (cambio catiónico) y solubilidad al entrar en contacto con la zeolita. Por lo anterior está comprobado que empleándola bien, alcanza a bajar el costo de la fertilización hasta el 50%. El tamaño del grano va de acuerdo al uso.

Saltos y León 2.006 dicen, que durante los últimos años se ha introducido al proceso agrícola sustancias denominadas biofertilizantes, los cuales ayudan a realizar una nueva técnica de cultivo para mejorar la producción y calidad de las cosechas.
Las mismas autoras señalan, que son productos que tienen como base microorganismos que viven normalmente en el suelo. Aunque en poblaciones bajas y que al incrementar sus poblaciones por medio de la inoculación artificial, son capaces de poner a disposición de las plantas mediante su actividad biológica, una parte de sustancias nutritivas que necesitan para su desarrollo, o sustancias activas que estimulan el desarrollo y el rendimiento de las plantas al actuar de forma beneficosa en algunos estadios de su ciclo vegetativo.

Mundo Verde S.F. (en línea) informa, que Fossil es un fertilizante mineral que posee Sílice amorfa y más de 19 minerales y microelementos importantes, que en aplicaciones edáficas contribuyen a la formación de la estructura del suelo, mejorando su capacidad de retención de humedad, formando complejos minerales organosilicatos que permiten reducir la lixiviación y evaporação de nutrientes esenciales como N, P y K. Proviene de microalgas fosilizadas, y es un aporte nutritivo para multiplicar microorganismos benéficos y algas en la capa arable. Es excelente para realizar mezclas con fertilizantes orgánicos o sintéticos, pudiéndose relacionarse, evitando la lixiviación y evaporación de nutrientes, transformándolos en fertilizantes de liberación lenta.

Oeko Garantie BSC-Ecuador S.F. informa, que Humivita es un abono orgánico que tiene alto contenido en materia orgánica oxidable y ácidos húmicos en estado natural procedentes de Leonardita. Es un producto que contribuye a la fertilidad del suelo mejorando sus propiedades físicas, químicas y biológicas. Contiene: Materia orgánica 33 % p/p, Extracto húmico total 18 % p/p, Ácidos húmicos 18 % p/p, Nitrógeno total 1,0 % p/p, Oxido de potasio 0,2 % p/p, Oxido de calcio 0,2 % p/p y Hierro 2,0 % p/p.

Infoagro 2.009 (en línea), señala que los abonos de liberación lenta aportan el nitrógeno progresivamente de forma que si no se eliminan totalmente las pérdidas de este elemento en el suelo, éstas se reducen en gran medida. Este tipo de fertilizante nitrogenado puede clasificarse en tres grupos:
- **Abonos recubiertos.**

- **Abonos de baja solubilidad.**

- **Abonos con inhibidores de la nitrificación.**

Abonos recubiertos. Son fertilizantes convencionales que se presentan en forma de gránulos envueltos en una membrana semipermeable que está constituida por una sustancia insoluble o de baja solubilidad en agua. La disolución del fertilizante se produce lentamente conforme el agua va atravesando el recubrimiento. La membrana se va rompiendo, debido al gradiente de presión osmótica (mayor en el interior del granulo), liberando los nutrientes en forma progresiva. Las sustancias más empleadas como recubrimiento de fertilizantes son: azufre, resinas, caucho, parafinas, plásticos perforados, etc.

Abonos de baja solubilidad. Son abonos que requieren gran cantidad de agua para su completa solubilidad, asegurando una baja concentración de nitrógeno en la disolución nutritiva. Pueden utilizarse productos orgánicos e inorgánicos. Entre los primeros destacan: urea-formaldehído, isobutilenriurea, crotilíden diurea, examina, etc. Los productos inorgánicos generalmente son fosfatos dobles de amonio y un metal, como el caso del fosfato amónico-magnésico.

Abonos con inhibidores de la nitrificación. Las principales pérdidas de nitrógeno cuando se aplican fertilizantes amoniacales y de la urea, se producen después de su conversión a nitratos. Existen ciertos materiales que son tóxicos para las bacterias nitrificantes y cuando se añaden al suelo, pueden inhibir temporalmente la nitrificación por tanto reducen las pérdidas de nitratos por lixiviación y desnitrificación y se aumenta el rendimiento de los fertilizantes amoniacales, así como del nitrógeno amoniacal que se origina a partir de la descomposición de la materia orgánica en el suelo. Estos productos resultan muy efectivos en suelos arenosos, para evitar el lavado de los nitratos y en suelos encharcados, para evitar la desnitrificación. Son productos derivados de la pirina y la pirinidina y entre ellos el más empleado es la nitrapirina.
Guamán, Andrade y Alava 2.004 dienen, que el propósito de la fertilización es poner a disposición de las plantas los nutrimientos que necesita para optimizar el rendimiento y calidad de la cosecha. La planta de fréjol es muy exigente en nitrógeno y potasio. El nitrógeno se lo puede aplicar en dos partes, la primera fracción a los 20 días de sembrado el cultivo y la segunda hasta inicios de la floración de éste, en bandas laterales separadas a 10 cm s de las plantas.

Villamizar 2.005 sostiene, que el Nitrógeno (elemento de crecimiento) es absorbido por el frijol en forma intensa a partir de los primordios florales (25-30 días de edad) hasta el llenado de vainas (65-75 días). En este periodo absorve aproximadamente el 50% del total de N requerido. Entre el 25-75% de N que necesita el frijol proviene de la fijación simbiótica por conducto de la bacteria Rhizobium phaseolurn, dependiendo de las condiciones de clima, suelo y manejo; la eficiencia de la fijación se reduce por la aplicación de fertilizantes nitrogenados. La extracción de nutrientes mayores para la producción de 2.5 ton/ha de grano en frijol, es de 102 kg de Nitrógeno, 9 kg de Fósforo, 93 kg de Potasio, 54 kg de Calcio y 25 kg de Zinc.

Salvador 1.996 afirma, que el rendimiento de una variedad de fréjol es afectado por factores ecológicos que influyen en el crecimiento de las plantas, como por la misma capacidad genética de la planta. Estas capacidades pueden ser expresadas por ciertos caracteres morfológicos de las plantas, tales como hábito de crecimiento, número de flores por planta, tamaño y densidad de la semilla. Con estos caracteres y una tecnología adecuada en el cultivo se mejorarían los rendimientos.

Villamizar 2.005 indica, que la extracción de nutrientes mayores para la producción de 2.5 ton/ha de grano en frijol, es de 102 kg de Nitrógeno, 9 kg de Fósforo, 93 kg de Potasio, 54 kg de Calcio y 25 kg de Zinc.
2.2. **METODOLOGÍA APLICADA.**

La investigación documental se efectuó consultando información referente a la temática tratada, constante en documentos escritos como libros, folletos, revistas, periódicos, boletines técnicos, tesinas y tesis de grado.

La documentación electrónica proviene de información obtenida en Internet, visitando nichos de información de organismos especializados.

Para la elaboración del material teórico contenido en el presente documento, se aplicaron métodos teóricos conocidos como inductivo-deductivos y análisis-síntesis. El trabajo práctico utilizó el método experimental.

El experimento fue realizado en la Estación Experimental del Litoral Sur Dr. Enrique Ampuero Pareja, del INIAP (Instituto Nacional Autónomo de Investigaciones Agropecuarias), localizado en Km 26 de la vía Durán-Boliche, Cantón Yaguachi, Provincia del Guayas; en cuyos laboratorios de suelos también se efectuaron los análisis químicos respectivos necesarios para la presente investigación.

2.3. **TRABAJOS REALIZADOS.**

Características del sitio experimental.

En este trabajo se efectuó en las instalaciones de la Estación Experimental del Litoral Sur Dr. Enrique Ampuero Pareja, de INIAP; ubicadas en el Km 26 al este de Guayaquil, en la vía Durán Tambo, Parroquia Virgen de Fátima, Cantón Yaguachi, Provincia del Guayas; entre las coordenadas 2° 15’ 15” Latitud Sur y 73° 38’ 40” de longitud occidental y 17 m snm.
La climatología del sector está caracterizada por medias anuales de 1.025 mm de pluviosidad, 26° c de temperatura y 83% de humedad relativa.

Material experimental.

Se utilizó semilla certificada de la variedad de frijol INIAP 473-Bolíche, que posee las siguientes características agronómicas:

- **Ciclo vegetativo:** 80 – 90 días.
- **Altura de planta:** 33 – 50 cms.
- ** Hábito de crecimiento:** Determinado tipo 1º
- **Días floración:** 32 - 36 días.
- **Color de flor:** Rosado pastel
- **Color de grano:** Rojo
- **Número de vainas/planta:** 7 - 11
- **Número de semillas/vaina:** 3 - 5.
- **Días a cosecha en tierno:** 60 a 65.
- **Días a cosecha en seco:** 85 a 90 días.
- **Rendimiento en grano tierno:** 5.542 kg/ha.
- **Rendimiento en grano seco:** 2.244 kg/ha.

Factores en estudio.

Se estudiaron los siguientes factores:

1. **Cultivo de frijol.**
2. **Tipos y dosis de fertilizantes nitrogenados.**

1/ Fuente: Estación Meteorológica Bolíche de INIAP, 2006
Se aplicaron los siguientes tratamientos:

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS APLICADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46% de N)</td>
<td>1.74 gr/maceta</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 gr + 0.4 gr/maceta</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 gr + 0.68 gr/maceta</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 gr + 0.68 gr/maceta</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr/maceta</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr/maceta</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr/maceta</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr/maceta</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo Absoluto</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Diseño.

Se utilizó el diseño Bloque Completo al Azar (DBCA) con cinco repeticiones y nueve tratamientos.

Características del Área Experimental.

Unidad experimental: Maceta con 5 kg de suelo cada una.

Unidades experimentales por bloque: 1
Número de bloques o repeticiones: 5
Número de tratamientos: 9
Total de unidades experimentales: 45

Todas las variables fueron sometidas al análisis de varianza y para determinar la diferencia estadística entre tratamientos se aplicó la prueba de Duncan al 5% de probabilidades.
Manejo del ensayo.

En la ejecución del presente trabajo se efectuaron las siguientes labores:

Preparación del terreno

El terreno utilizado en cada maceta fue recolectado en el sitio experimental, luego muliado y pesado; colocando 5 kg de tierra por maceta, el tipo de suelo franco arcilloso.

Siembra

La siembra se efectuó manualmente colocando 2 semillas por maceta a una profundidad de 2 cms y se aplicó un riego de germinación. Las macetas fueron colocadas a una distancia de 0.40 x 0.40 m entre plantas e hileras, formando bloques o repeticiones. La distancia entre bloques fue de 0.50 m.

Riego

Se proporcionó riego manualmente, aplicando tres riegos por semana, para mantener el suelo en capacidad de campo.

Fertilización.

La fertilización se realizó manualmente a los 21 días después de la siembra colocando la dosis completa planeada para cada tratamiento, mediante aplicación alrededor de la planta, a una distancia de 10 cms en corona.

Control de malezas

El control de malezas se efectuó manualmente de manera constante, a fin de mantener libre el cultivo durante su desarrollo.
Control fitosanitario.

Se efectuaron dos aplicaciones para control del insecto "minador de la hoja", mediante Clorpirifos en dosis de 5 ml en 2 l de agua, lográndose un buen control en los ataques aparecidos en las etapas de floración y llenado de vainas.

Cosecha

La cosecha se efectuó manualmente a los 67 días de edad de las plantas, cuando alcanzaron la madurez; cosechándose el fruto en estado seco a nivel de campo.

2.4.6. Datos evaluados.

Se evaluaron los siguientes datos:

Altura de planta.

Es la distancia que existe entre la parte basal y el ápice del meristema terminal. Se tomó a los 30 días de edad de las plantas en todas las unidades experimentales, expresándose en centímetros.

Número de vainas por planta.

El número de vainas por planta se tomó a la cosecha, en dos plantas en cada maceta y se promedió.

Longitud de vaina

La longitud de vaina es la distancia entre los dos extremos del largo de la misma. Se determinó en todas las vainas de cada maceta, se promedió y expresó en centímetros.
Número de vainas vanas.

Del total de vainas presentes a la cosecha, se separaron las vainas completamente sin desarrollar y vanas, se contabilizaron y promediaron.

Número de granos por planta.

El número de granos por planta, se determinaron utilizando las vainas llenas cosechadas en las dos plantas de cada maceta, se contabilizaron y promediaron.

Peso de granos.

Los granos utilizados para determinar el dato anterior, se pesaron y expresaron en gramos y se promediaron.

Peso seco de biomasa.

El peso seco de biomasa se tomó después de la cosecha. Se extrajeron todas plantas incluyendo las vainas y raíces respectivas sin tierra, por cada tratamiento, se llevaron a la estufa para su secado, se pesaron y expresaron en gramos.

Contenido de nitrógeno.

El contenido de nitrógeno en las plantas fue determinado en laboratorio, llevando para el efecto una muestra de planta por cada tratamiento y se expresó en gramos por unidad nutricional.

Eficiencia agronómica.

De las mismas muestras llevadas a laboratorio para nitrógeno y biomasa se determinó la eficiencia agronómica, que es la cantidad de materia seca, o de granos producidos por unidad de nutriente, calculada mediante la fórmula de Fagheria, N.K 1.992, que es la siguiente:
La eficiencia agronómica fue establecida para cada uno de los tratamientos, luego de los cálculos efectuados mediante la fórmula anteriormente mencionada.

2.5. RESULTADOS

Altura de planta

En el cuadro 1 se presentan los valores promedio de altura de planta a los 30 días de edad de las mismas. El análisis de varianza demostró alta significancia, y el coeficiente de variación fue igual a 6.47 %.

De acuerdo a la prueba de Duncan, el tratamiento T3 que registró el mayor valor con 17.6 cms, resultó igual estadísticamente entre sí con los tratamientos T5 y T1, y diferente con los demás tratamientos. El tratamiento testigo T9 reportó el menor valor promedio con 14.0 cms, y fue igual estadísticamente con los tratamientos T8, T7 y T4.

Longitud de vaina

Los valores promedio de longitud de vaina expresados en centímetros se muestran en el cuadro 2. El análisis de varianza no encontró significancia entre tratamientos y el coeficiente de variación fue igual a 33.89 %.

Según Duncan, todos los tratamientos fertilizados fueron iguales estadísticamente entre sí, y superiores al tratamiento testigo sin fertilizar. Los valores fluctuaron entre 17.4 y 14.0 reportados para los tratamientos T5 y T9 en su orden.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/maceta</th>
<th>ALTURA DE PLANTA (cms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46% de N)</td>
<td>1.74 gr</td>
<td>16.80 ab</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>15.80 b</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>17.60 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>15.00 bc</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>17.40 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>15.80 b</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>15.00 bc</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>14.60 bc</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>14.00 c</td>
</tr>
</tbody>
</table>

PROMEDIO

15.78

C.V. 6.47

S.E. **

C.V = Coeficiente de variación.

S.E. = Significancia estadística.

** = Altamente significativo.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/maceta</th>
<th>LONGITUD DE VAINA (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>5.12 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>4.50 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>4.82 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>4.56 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>4.56 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>5.16 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>5.02 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>4.58 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>1.96 b</td>
</tr>
</tbody>
</table>

PROMEDIO

<table>
<thead>
<tr>
<th>LONGITUD DE VAINA</th>
<th>4.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.V.</td>
<td>33.89</td>
</tr>
<tr>
<td>S.E.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

C.V = Coeficiente de variación.
S.E. = Significancia estadística.
n.s. = No significativo
Número de vainas.

En el cuadro 3 se presentan los valores promedio del número de vainas por planta a la cosecha.

El análisis de varianza comprobó alta significancia entre tratamientos y el coeficiente de variación fue igual a 24.10 %.

De acuerdo a la prueba de Duncan, todos los tratamientos fertilizados fueron iguales estadísticamente entre sí, y superiores al tratamiento testigo sin fertilizar. Los valores promedios fluctuaron entre 8.0 y 3.2 como mayor y menor valor registrados por los tratamientos T6 y T9 respectivamente.

Número de vainas varas.

Los valores promedio del número de vainas varas se observan en el cuadro 4.

El análisis de varianza no encontró significancia entre tratamientos. El coeficiente de variación fue igual a 80.73 %.

Efectuada la prueba de Duncan se comprobó que los tratamientos aplicados no dieron estadísticamente entre sí. Los valores promedios oscilaron entre 2.2 y 1.2 vainas varas por planta, reportados para los tratamientos T1 y T5 como mayor valor, y T8 como menor valor en su orden.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/maceta</th>
<th>NUMERO DE VAINA (Vaina/planta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>7.20 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>7.40 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>6.40 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>6.20 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>7.00 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>8.00 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>6.40 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrasil (mezcla)</td>
<td>1.74 gr</td>
<td>6.00 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>3.20 b</td>
</tr>
</tbody>
</table>

PROMEDIO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.38</td>
</tr>
<tr>
<td>C.V.</td>
<td>24.10</td>
</tr>
<tr>
<td>S.E.</td>
<td>**</td>
</tr>
</tbody>
</table>

C.V = Coeficiente de variación.
S.E. = Significancia estadística.
** = Altamente significativo.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/m aceta</th>
<th>VAÍNAS VANAS (Vaina/planta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>2.20 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>2.00 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>1.20 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>1.40 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>2.20 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>2.20 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>2.00 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>1.00 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>1.20 a</td>
</tr>
</tbody>
</table>

PRÓMEDIO

1.71

C.V. 80.73

S.E. n.s.

C.V = Coeficiente de variación.

S.E. = Significancia estadística.

n.s. = No significativo.
Número de granos.

El cuadro 5 presenta los valores promedio del número de granos por planta.

El análisis de varianza estableció alta significancia entre tratamientos, y el coeficiente de variación fue igual a 32.72%.

De acuerdo a la prueba de Duncan, todos los tratamientos fertilizados resultaron iguales estadísticamente entre sí, y diferentes al testigo absoluto sin fertilizar. Los valores promedio fluctuaron entre 12.2 y 2.6 como mayor y menor valor registrados para los tratamientos T1 y T9 respectivamente.

Peso de granos.

Los valores promedio del peso de granos se presentan en el cuadro 6 expresados en gramos.

El análisis de varianza comprobó alta significancia entre tratamientos y el coeficiente de variación fue igual a 33.53%.

Según la prueba de Duncan, todos los tratamientos fertilizados resultaron iguales estadísticamente entre sí, y diferentes al testigo absoluto sin fertilizar. Los valores promedio fluctuaron entre 5.90 y 1.04 gramos como mayor y menor valor presentados por los tratamientos Y1 y T9 respectivamente.
CUADRO 5. **Valores promedios de número de granos, en el estudio de eficiencia nutricional de nitrógeno utilizando varias fuentes de fertilizante y revestimiento en cultivo de frijol**. Boliche, 2.009.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/maceta</th>
<th>NÚMERO DE GRANOS (granos/planta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>12.20 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>11.20 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>11.40 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>11.20 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>11.40 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>11.80 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>11.80 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>11.60 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>2.60 b</td>
</tr>
</tbody>
</table>

PROMEDIO 10.58
C.V. 32.72
S.E. **

C.V = Coeficiente de variación.
S.E. = Significancia estadística.
** = Altamente significativo.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS (gr/maceta)</th>
<th>PESO DE GRANOS (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>5.10 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>4.72 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>4.44 a</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>4.42 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>5.90 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>4.00 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>4.70 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>3.80 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>1.04 b</td>
</tr>
</tbody>
</table>

PROMEDIO 4.24
C.V. 33.53
S.E. * *

C.V. = Coeficiente de variación.
S.E. = Significancia estadística.
* * = Altamente significativo.
Peso seco de biomasa

En el cuadro 7 se presenta los valores promedio de peso seco de biomasa expresados en gramos.

El análisis de varianza estableció significancia entre tratamientos y el coeficiente de variación fue igual a 22.03 %.

Efectuada la prueba de Duncan, el tratamiento T5 que registró 13.5 gramos como mayor valor promedio, resultó igual estadísticamente entre sí con todos los tratamientos aplicados, excepto con los tratamientos T3 y T9 que fueron inferiores. El tratamiento T3 fue diferente estadísticamente entre sí con el tratamiento T9 testigo absoluto que resultó inferior estadísticamente a todos los tratamientos en estudio.

Eficiencia agronómica

Los valores promedio de eficiencia agronómica de los diferentes tratamientos aplicados se presentan en el cuadro 8. Estos valores han sido establecidos utilizando el peso de granos y aplicando la Fórmula de Faguerra. Se relacionan con incrementos alcanzados en relación al testigo y se expresan en kilogramos por unidad de nutriente.

El mayor promedio de eficiencia agronómica lo alcanzó el tratamiento T5 con 12.15; seguido del tratamiento T1 con 10.15 kg. El tratamiento T8 con 6.9 kg registró el menor valor de eficiencia agronómica entre los tratamientos fertilizados.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS gr/maceta</th>
<th>PESO SECO DE BIOMASA (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46 % de N)</td>
<td>1.74 gr</td>
<td>12.06 a</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 gr</td>
<td>11.08 a</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 gr</td>
<td>9.32 b</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 gr</td>
<td>10.92 a</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrato de Amonio</td>
<td>2.4 gr</td>
<td>13.50 a</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>10.96 a</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 gr</td>
<td>10.44 a</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 gr</td>
<td>10.34 a</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0</td>
<td>6.98 c</td>
</tr>
</tbody>
</table>

PROMEDIO

<table>
<thead>
<tr>
<th>C.V.</th>
<th>10.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.E.</td>
<td>22.03</td>
</tr>
</tbody>
</table>

C.V = Coeficiente de variación.
S.E. = Significancia estadística.
* = Significativo.
CUADRO 8. VALORES PROMEDIOS DE EFICIENCIA AGRONOMICA, EN EL ESTUDIO DE EFICIENCIA NUTRICIONAL DE NITROGENO UTILIZANDO VARIAS FUENTES DE FERTILIZANTE Y REVESTIMIENTO EN CULTIVO DE FREJOL. BOLICHÉ, 2.009.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>TIPO DE FERTILIZANTE</th>
<th>DOSIS (gr/maceta)</th>
<th>PESO DE GRANOS POR UNIDAD DE NUTRIENTE (kilogramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Urea (46% de N)</td>
<td>1.74 g</td>
<td>10.15</td>
</tr>
<tr>
<td>T2</td>
<td>Urea + Zeolita</td>
<td>1.74 + 0.4 g</td>
<td>9.20</td>
</tr>
<tr>
<td>T3</td>
<td>Urea + Fossil</td>
<td>1.74 + 0.68 g</td>
<td>8.50</td>
</tr>
<tr>
<td>T4</td>
<td>Urea + Humivita</td>
<td>1.74 + 0.68 g</td>
<td>8.45</td>
</tr>
<tr>
<td>T5</td>
<td>Nitrito de Amonio</td>
<td>2.4 g</td>
<td>12.15</td>
</tr>
<tr>
<td>T6</td>
<td>Sulfato de Amonio</td>
<td>3.81 gr</td>
<td>7.40</td>
</tr>
<tr>
<td>T7</td>
<td>Urea + Azufre (mezcla)</td>
<td>2.0 g</td>
<td>9.15</td>
</tr>
<tr>
<td>T8</td>
<td>Urea + Agrosil (mezcla)</td>
<td>1.74 g</td>
<td>6.90</td>
</tr>
<tr>
<td>T9</td>
<td>Testigo sin fertilizar</td>
<td>0.0 g</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1/ Valores calculados mediante la Fórmula de Fageria, N. K. 1.992, para establecer eficiencia nutricional de nitrógeno en vegetales.

2/ Incrementos en relación al testigo.
En la presente investigación se determinó que todos los tratamientos aplicados con diferentes concentraciones de nitrógeno a base de urea y varias fuentes de fertilizantes nitrogenados recubiertos de diferentes productos, presentaron eficiencia agronómica de recuperación de nitrógeno en cantidades superiores a 6.9 kg/unidad de nutriente aplicada, en relación al testigo absoluto sin fertilizar; de acuerdo a la Fórmula de Fagueria utilizada para el efecto; sobresaliendo los fertilizantes sin mezcla a base de Nitrato de amonio y Urea que alcanzaron los mayores niveles de eficiencia.

A1 respecto es interesante destacar, que entre las fuentes de nitrógeno sin mezcla utilizados en el presente ensayo (Urea, Nitrato de Amónio y Sulfato de Amónio), las respuestas de eficiencia fueron diametralmente opuestas. mientras el Nitrato de Amónio y Urea registraron los mayores niveles con 12.15 y 10.15 kg/unidad de nutriente respectivamente; el Sulfato de Amónio reportó niveles inferiores con 7.40 kg/unidad de nutriente, superando sólo a Urea + Agrosil (mezcla) que obtuvieron 6.90 kg/unidad de nutriente, entre los tratamientos fertilizados. Esto se debe posiblemente al mayor efecto acidificante del Sulfato de Amónio respecto del Nitrato de Amónio y Urea en los suelos, acorde a lo señalado por Chien, Gearhart y Colllamer sf; que hace que en niveles significativos de acidez se afecte la flora microbiana inhibiendo temporalmente la nitrificación como lo afirma Infoagro 2.009 (en línea), en este caso las nitrobacterias existentes en cultivos de leguminosas como el fréjol, reduciendo además el rendimiento de granos.
III. CONCLUSIONES

Con base a las evidencias de campo y resultados encontrados se concluye lo siguiente:

1. Todos los tratamientos aplicados con diferentes concentraciones de nitrógeno a base de urea y varias fuentes de fertilizantes nitrogenados recubiertos de diferentes productos, presentaron eficiencia agronómica de recuperación de nitrógeno en cantidades superiores a 6.9 kg/unidad de nutriente aplicada, en relación al testigo absoluto sin fertilizar.

2. El tratamiento T5 a base de Nitrato de amonio en dosis de 2.5 gr/maceta alcanzó el mayor índice de recuperación de nitrógeno, equivalente a 12.15 kg/unidad de nutriente aplicada.
IV. LITERATURA CONSULTADA

Soca, M. 2002 Zeolita: el mineral del siglo XXI. El Universo, Guayaquil, EC. p 10 A.

ANEXOS