Guayaquil, 31 de Octubre del 2018

Dra. Clara Jaime Game Msc
Coordinador de la Escuela de Graduados
Facultad de Ciencias Médicas
Universidad de Guayaquil
Ciudad.-

De mis consideraciones:

Yo DR ANGEL ORTIZ ARAÚZ con C.C. No.0906611827, asignado como Revisor del trabajo de investigación, he revisado y aprobado el proyecto final de tesis de la Dra. Soraya Alexandra Parra Patiño con el título: EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSÍNTESIS POR REDUCCIÓN ABIERTA Y MÍNIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL.

Agradeciendo de antemano por la favorable acogida a esta petición le reitero mis sentimientos de consideración y estima.

Atentamente,

DR. ANGEL ORTIZ ARAÚZ
C.C.Nº.- 0906611827
Octubre 22 del 2018

Médico
Soraya Alexandra Parra Putiño
RESIDENTE ESPECIALIDAD TRAUMATOLOGÍA Y ORTOPEDIA
HOSPITAL TEODORO MALDONADO CARBO IESS
Ciudad

Por medio del presente oficio comunico a usted, que aplicando lo que consta en la Unidad Curricular de Titulación vigente en esta Escuela su Anteproyecto de Investigación con el tema:

"EVALUACIÓN CLINICA - IMAGENOLÓGICA DE LAS LESIONES DE TEJIDOS BLANDOS EN FRACTURAS DE MESETA TIBIAL. RESULTADOS FUNCIONALES".

Ha sido modificado de la siguiente manera:

"EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSINTESIS POR REDUCCIÓN ABIERTA Y MÍNIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL."

Tutor asignado: Dr. Miguel Mite Vivar

Ha sido revisado y aprobado por la Coordinación de Posgrado el día 05 de octubre del 2018, por lo tanto, puede continuar con la ejecución del Proyecto final de titulación.

Revisor designado: Dr. Ángel Ortiz Arauz

Atentamente,

Dra. Clara Jaime Game MSc.
COORDINADORA

C. archivo
UNIDAD CURRICULAR DE TITULACIÓN

FORMULARIO DE REGISTRO DEL TRABAJO DE TITULACIÓN

<table>
<thead>
<tr>
<th>PROGRAMA DE ESPECIALIZACIÓN</th>
<th>UNIDAD ASISTENCIAL DOCENTE (UAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSGRADO DE TRAUMATOLOGÍA Y ORTOPEDIA</td>
<td>Hospital Teodoro Maldonado Carbo</td>
</tr>
</tbody>
</table>

FECHA: Día: **05** Mes: **11** Año: **2018**

Fecha Inicio Programa:
Día: **19** Mes: **Oct** Año: **2015**

Fecha Culminación Programa:
Día: **19** Mes: **Oct** Año: **2018**

DATOS DEL POSGRADISTA

<table>
<thead>
<tr>
<th>NOMBRES:</th>
<th>PARRA PATIÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cédula No:</td>
<td>0104366547</td>
</tr>
<tr>
<td>E-mail Institucional:</td>
<td>sori.pa@hotmail</td>
</tr>
<tr>
<td>Teléfono convencional:</td>
<td>0987742829</td>
</tr>
</tbody>
</table>

APellidos: SORAYA ALEXANDRA

Dirección: 25 julio y Ernesto Alban

TRABAJO DE TITULACIÓN

EVALUACION FUNCIONAL Y COMPLICACIONES EN OSTEOSINTESIS POR REDUCCION ABIERTA Y MINIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL.

MODALIDAD/OPCIÓN DE TITULACIÓN:
1. TRABAJO DE INVESTIGACION (X)
2. EXAMEN COMPLEXIVO ()
3. ARTICULO CIENTIFICO ()

LÍNEAS DE INVESTIGACIÓN.

UNIDAD DE POSGRADO, INVESTIGACIÓN Y DESARROLLO – UG.

<table>
<thead>
<tr>
<th>LÍNEA DE INVESTIGACIÓN:</th>
<th>SALUD HUMANA, ANIMAL Y DEL AMBIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBLÍNEA:</td>
<td>METODOLOGÍAS DIAGNOSTICAS Y TERAPEUTICAS BIOLOGICAS, BIOQUIMICAS Y MOLECULARES</td>
</tr>
</tbody>
</table>

MINISTERIO DE SALUD PÚBLICA.

<table>
<thead>
<tr>
<th>ÁREA/LÍNEA DE INVESTIGACIÓN:</th>
<th>Sistema Nacional de Salud/Prevencion</th>
</tr>
</thead>
</table>

LÍNEA DE INVESTIGACIÓN INSTITUCIONAL: LESSIONES NO INTENCIONALES NI POR TRANSPORTE / FUERZAS MECÁNICAS

SUBLÍNEA: Nuevas tecnologías.

PALABRAS CLAVE: MESETA TIBIAL, EVALUACION FUNCIONAL, COMPLICACIONES.

TIPO Y DISEÑO DE LA INVESTIGACIÓN:

Estudio de enfoque cuantitativo, de tipo observacional, analítico no experimental, de diseño caso-control, retrospectivo y longitudinal.

TUTOR: DR. MIGUEL ANGEL MITE VIVAR

REVISOR METODOLÓGICO:

COORDINADOR DEL PROGRAMA: DR. MIGUEL ANGEL MITE VIVAR

No. DE REGISTRO:
No. CLASIFICACIÓN:

VALIDACIÓN DEL TRABAJO DE TITULACIÓN. DIRECTOR / COMISIÓN DE INVESTIGACIÓN:

Memorando Nro. IESS-HTMC-CGI-2018-0287-FDQ
Guayaquil, 31 de octubre de 2018

PARA: Dra. Clara Jaime Game
Coordinadora de Posgrado
Facultad de Ciencias Médicas de Universidad de Guayaquil

De mi consideración:

Yo, Mgs. Wilson Stalin Benites Illescas, con cédula de identidad Nro. 0701503047, médico tratante de la Unidad Técnica de Cirugía, en mi calidad de Coordinador General de Investigación del Hospital de Especialidades Teodoro Maldonado Carbo, certifico que he revisado y aprobado el proyecto de tesis realizado por la Md. Soraya Alexandra Parra Patiño, Posgradista de Traumatología y Ortopedia de la Universidad de Guayaquil, sobre el tema: "EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSÍNTESIS POR REDUCCIÓN ABIERTA Y MÍNIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL".

Particular que comunico para los fines pertinentes.

Atentamente,

Mgs. Wilson Stalin Benites Illescas
COORDINADOR GENERAL DE INVESTIGACIÓN, ENCARGADO HOSPITAL DE ESPECIALIDADES – TEODORO MALDONADO CARBO

Referencias:
- Solicitud
Guayaquil, 19 de Octubre del 2018

Dra.
Clara Jaime Game MSc.
Coordinadora de Postgrado (E)
Facultad de Ciencias Médicas

De mis consideraciones:

Yo, Dr. Miguel Ángel Mite Vivar con C.I.: 090521267-6, Coordinador de Postgrado de Traumatología y Ortopedia en el Hospital Dr. Teodoro Maldonado Carbo, he revisado y aprobado el proyecto de tesis realizado por: Dra. Soraya Alexandra Parra Patiño con el título: EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSÍNTESIS POR REDUCCIÓN ABIERTA Y MÍNIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL.

Agradeciendo por la atención brindada le reitero mis sentimientos de consideración y estima.

Atentamente,

Dr. Miguel Ángel Mite Vivar
C.I. No.: 090521267-6
Coordinador de Postgrado
Hospital Dr. Teodoro Maldonado Carbo.
Guayaquil, 22 de Octubre del 2018

Dra.
Clara Jaime Game MSc.
Coordinadora de Postgrado (E)
Facultad de Ciencias Médicas

De mis consideraciones:

Yo, Dr. Miguel Angel Mite Vivar con C.I.: 090521267-6 asignado como Tutor del trabajo de investigación, he revisado y aprobado el proyecto de tesis realizado por la: Dra. Soraya Alexandra Parra Patiño con el título: EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSÍNTESIS POR REDUCCIÓN ABIERTA Y MÍNIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL

Agradeciendo por la atención brindada le reitero mis sentimientos de consideración y estima.

Atentamente.

Dr. Miguel Angel Mite Vivar
Traumatólogo
C.I. No.: 090521267-6
PARA: Dra. Soraya Alexandra Parra Patiño
Posgradista de la Universidad Guayaquil

De mi consideración:

Por medio del presente, se remite base de datos del código CIE 10: S821, del periodo 2015 a 2017, del trabajo de Investigación: "EVALUACION FUNCIONAL Y COMPLICACIONES EN OSTEOSINTESIS POR REDUCCION ABIERTA Y MINIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL"

Por lo anteriormente expuesto reitero que puede realizar su trabajo de titulación siguiendo las normas y reglamentos del Hospital Teodoro Maldonado Carbo.

Particular que comento para los fines pertinentes.

Atentamente,

[Signature]

Mgs. Wilson Stalin Benites Illescas
COORDINADOR GENERAL DE INVESTIGACIÓN, ENCARGADO HOSPITAL DE ESPECIALIDADES – TEODORO MALDONADO CARBO

Referencias:
- IESS-HTMC-CGTIC-2018-5101-M
- IESS-HTMC-CGI-2018-0633-M
- Solicitud

*Documento fuera de Quipux
UNIVERSIDAD DE GUAYAQUIL
FACULTAD DE CIENCIAS MÉDICAS
COORDINACIÓN DE POSGRADO

PROYECTO DE INVESTIGACIÓN PRESENTADO COMO REQUISITO PREVIO PARA LA OBTENCIÓN DEL TITULO DE ESPECIALISTA EN TRAUMATOLOGÍA Y ORTOPIEDIA

TEMA
“EVALUACIÓN FUNCIONAL Y COMPLICACIONES EN OSTEOSINTESIS POR REDUCCIÓN ABIERTA Y MINIMA INVASIVA EN EL TRATAMIENTO DE FRACTURAS DE MESETA TIBIAL.”

AUTOR
MD. SORAYA ALEXANDRA PARRA PATIÑO

TUTOR
DR. MIGUEL ANGEL MITE VIVAR

AÑO
2018
GUAYAQUIL - ECUADOR
ÍNDICE GENERAL

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍNDICE GENERAL</td>
<td>II</td>
</tr>
<tr>
<td>ÍNDICE DE TABLAS</td>
<td>IV</td>
</tr>
<tr>
<td>ÍNDICE DE ILUSTRACIONES</td>
<td>V</td>
</tr>
<tr>
<td>DEDICATORIA</td>
<td>V</td>
</tr>
<tr>
<td>AGRADECIEMIENTO</td>
<td>VI</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>VII</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>VIII</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>I</td>
</tr>
<tr>
<td>CAPÍTULO I</td>
<td>3</td>
</tr>
<tr>
<td>1. PLANTEAMIENTO DEL PROBLEMA</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Determinación del problema</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Preguntas de investigación</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Justificación</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Viabilidad</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Formulación de objetivos e hipótesis</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1 Objetivo general</td>
<td>6</td>
</tr>
<tr>
<td>1.5.2 Objetivos específicos</td>
<td>6</td>
</tr>
<tr>
<td>1.6.3. Hipótesis</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Variables</td>
<td>7</td>
</tr>
<tr>
<td>1.7.1 Variable independiente</td>
<td>7</td>
</tr>
<tr>
<td>1.7.2 Variables dependiente</td>
<td>7</td>
</tr>
<tr>
<td>1.7.3 Variables intervinientes</td>
<td>7</td>
</tr>
<tr>
<td>CAPÍTULO II</td>
<td>8</td>
</tr>
<tr>
<td>2. Marco teórico</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Antecedentes científicos</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Bases teóricas</td>
<td>10</td>
</tr>
<tr>
<td>CAPÍTULO III</td>
<td>25</td>
</tr>
<tr>
<td>3. MATERIALES Y MÉTODOS</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Materiales</td>
<td>25</td>
</tr>
</tbody>
</table>
3.1.1 Localización.. 25
3.1.2 Caracterización de la zona de trabajo.. 25
3.1.3 Periodo de investigación... 25
3.1.4 Universo y muestra... 25
3.1.4.1 Universo: .. 25
3.1.4.2 Muestra: ... 25
3.1.5 Criterios de inclusión/ exclusión.. 26
3.1.5.1 Criterios de inclusión... 26
3.1.5.2 Criterios de exclusión.. 26
3.2 MÉTODOS... 26
3.2.1 Tipo de investigación .. 26
3.2.2 Diseño de investigación... 26
3.2.3 Nivel de investigación... 27
3.2.4 Operacionalización de equipos e instrumentos.. 27
3.2.5 Análisis de la información.. 27
3.2.6 Aspectos éticos y legales.. 28
3.2.7 Cuadro de operacionalización de las variables.. 29
CAPÍTULO IV.. 30
4. RESULTADOS.. 30
4.1 Resultados ... 30
4.2 Discusión.. 40
CONCLUSIONES Y RECOMENDACIONES.. 42
Conclusiones ... 42
Recomendaciones.. 42
BIBLIOGRAFÍA.. 43
ANEXOS.. 45
Anexo 1. Base de datos en Excel.. 45
Anexo 2. Base de datos en excel.. 46
Anexo 3. Knee Society Score... 47
Anexo 4. Autorización para la realización del estudio... 49
REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGIA.. 50
ÍNDICE DE TABLAS

Tabla 1. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Grupos etarios. ...28

Tabla 2. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Características clínicas. ..29

Tabla 3. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Tipo de tratamiento quirúrgico. ..30

Tabla 4. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Evaluación funcional Escala Knee Society Score. ...31

Tabla 5. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Promedio de puntuación de Escala Knee Society Score. ...33

Tabla 6. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Balance articular (promedio global)..34

Tabla 7. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Balance muscular global. ..35

Tabla 8. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Análisis de asociación. ..36

Tabla 9. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Análisis de correlación. ..37
ÍNDICE DE ILUSTRACIONES

Ilustración 1. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Análisis de correlación..39

DEDICATORIA
Cada sacrificio tiene su recompensa, por eso cada día tu has sido mi fortaleza mi mayor motivación, para seguir adelante sin ti nada hubiera sido posible le doy gracias a dios porque estas en mi vida, para ti es cada logro que tenga en mi vida para disfrutarlo y seguirlo a tu lado, hija de mi vida Samantha Estefany López Parra.

AGRADECIMIENTO
Un inmenso agradecimiento a todo el personal del Hospital Teodoro Maldonado Carbo por cada uno de sus consejos y orientaciones en estos años de formación y de una manera particular al Dr Miguel Mite, quien a sido la mayor motivación como profesional y persona, que Dios lo colme de bendiciones.

De igual manera a mi familia mi madre que ha sido mi apoyo incondicional para cumplir cada día con mis objetivos.

RESUMEN

Las fracturas de la meseta tibial ocurren debido a una combinación de carga axial y fuerzas aplicadas en varo / valgo que conducen a depresión articular, mala alineación y
un mayor riesgo de osteoartritis postraumática, por tal motivo es importante realizar evaluaciones seriadas de los resultados postoperatorios a largo plazo.

Objetivo: Establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de las fracturas de meseta tibial en el Hospital Regional IESS N° 2 Teodoro Maldonado Carbo durante el periodo 2015-2017.

Metodología: Estudio de enfoque cuantitativo, observacional, analítico, retrospectivo y de corte transversal. Se analizó los pacientes con fracturas de meseta tibial durante el periodo del 1 de enero del 2015 hasta el 31 de diciembre del 2017 y fueron divididos en 2 grupos de estudio, grupo A de pacientes con cirugía abierta y grupo B de pacientes con cirugía mínima invasiva. Se empleó el software estadístico SPSS versión 21 para el análisis de los datos, utilizando estadística de tipo descriptiva e inferencial.

Resultados: El tratamiento quirúrgico de las fracturas de meseta tibial que se realiza con mayor frecuencia es la osteosíntesis convencional con reducción abierta y fijación interna (72,3%). Con la osteosíntesis convencional se reportaron resultados buenos y excelentes en el 19,2% y el 73,6% respectivamente, mientras que con la osteosíntesis mínima invasiva se reportaron resultados casi similares (11,9% y 73,1%). Después de la cirugía se recuperaron los rangos de movilidad articular casi a la normalidad, después de 6 meses posquirúrgicos, pero con un resultado considerablemente superior con la osteosíntesis mínima invasiva: flexión 130,9º vs 117,07º; extensión de -5,1 vs -15,79º. Los pacientes con la técnica MIPO presentan mayor recuperación de la fuerza muscular (52,2% con grado 5) que los operados con RAFI (31,5% con grado 5). Se encontró asociación estadísticamente significativa entre los resultados excelentes con la osteosíntesis convencional (p=0,04). También se encontró asociación estadísticamente significativa (p=0,0001) entre el inicio de la rehabilitación física y los resultados de la evaluación funcional de la rodilla operada.

Palabras clave: fractura de meseta tibial, evaluación funcional, complicaciones.

ABSTRACT
Fractures of the tibial plateau occur due to a combination of axial load and varus / valgus applied forces that lead to joint depression, malalignment and an increased risk of post-traumatic osteoarthritis, for this reason it is important to perform serial evaluations of the postoperative results. long term.

Objective: To establish the functional evaluation and the complications of osteosynthesis by open and minimally invasive reduction in the treatment of tibial plateau fractures in the IESS Regional Hospital No. 2 Teodoro Maldonado Carbo during the period 2015-2017.

Methodology: Study of quantitative, observational, analytical, retrospective and transversal approach. We analyzed patients with tibial plateau fractures during the period from January 1, 2015 to December 31, 2017 and were divided into 2 study groups, group A of patients with open surgery and group B of patients with minimally invasive surgery. Statistical software SPSS version 21 was used to analyze the data, using descriptive and inferential statistics.

Results: The surgical treatment of fractures of the tibial plateau that is performed more frequently is conventional osteosynthesis with open reduction and internal fixation (72.3%). With conventional osteosynthesis good and excellent results were reported in 19.2% and 73.6% respectively, while with almost minimal invasive osteosynthesis almost similar results were reported (11.9% and 73.1%). After surgery, articular mobility ranges were recovered almost to normal, after 6 months postoperatively, but with considerably higher results with minimally invasive osteosynthesis: flexion 130.9º vs 117.07º; extension of -5.1 vs -15.79º. Patients with the MIPO technique presented greater recovery of muscle strength (52.2% with grade 5) than those operated with RAFl (31.5% with grade 5). A statistically significant association was found between excellent results with conventional osteosynthesis (p = 0.04). A statistically significant association was also found (p = 0.0001) between the start of physical rehabilitation and the results of functional evaluation of the operated knee.

Key words: Tibial plateau fracture, functional evaluation, complications.
INTRODUCCIÓN

Las fracturas de meseta tibial son lesiones de baja y alta energía que se asocian con discapacidad funcional dependiendo de la efectividad del tratamiento quirúrgico; sin embargo, con el advenimiento de varios dispositivos quirúrgicos, ha habido una marcada mejoría en el resultado funcional (1). El tratamiento se basa en restaurar la congruencia de las articulaciones, garantizar la estabilidad de la articulación, la alineación y lograr un rango completo de movimiento. Sin embargo, hay informes de disociación entre las características radiográficas y el resultado funcional. La incongruencia articular puede no estar siempre correlacionada con un resultado funcional deficiente (2).

Al tratar estas fracturas no solo se debe considerar la lesión ósea sino también el daño del tejido blando. Muchos autores han encontrado resultados pobres en pacientes tratados con reducción abierta y fijación interna de fracturas de meseta tibial con una cobertura pobre de partes blandas (3). Los métodos de fijación que se han usado para abordar estas fracturas incluyen reducción cerrada, refuerzo de yeso, reducción abierta y fijación interna, aplicación de fijadores externos, fijación con tornillo percutáneo, tornillo canulado guiado con alambre, técnicas mínimamente invasiva, cada una con sus propias ventajas y desventajas (4).

Las fracturas tibiales de alta energía afectan principalmente al grupo de edad más joven en años de vida productiva y tienen un impacto socioeconómico significativo debido al tiempo necesario para recuperarse y el requisito posterior de reemplazo total de rodilla en algunos casos severos. Las investigaciones actuales se centran en el análisis de los resultados postoperatorios, mediante la evaluación funcional con el fin de evaluar el impacto de estas fracturas y de su tratamiento sobre el desenvolvimiento del paciente en las actividades de su entorno.

El objetivo de este estudio fue establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de las fracturas de meseta tibial en el Hospital Regional IESS Nº 2 Teodoro Maldonado Carbo durante el periodo 2015-2017. Los resultados del estudio permitieron actualizar
información de este tipo de fracturas muy frecuentes en la institución, además que permitió identificar los pacientes con mayor probabilidad de presentar complicaciones postoperatorias y establecer la técnica quirúrgica que brinde mayor seguridad y eficacia en sus resultados. Además, proporcionó avances en cuanto a diagnóstico, tratamiento, así como recomendaciones para el cirujano ortopedista basada en los resultados obtenidos.

Se revisaron los elementos más importantes al momento de realizar la cirugía de fracturas de meseta tibial, profundizando los aspectos más relevantes o que generan controversia, como establecer si inicio precoz de la intervención da mejores resultados. Se analizaron las características demográficas, clínicas de los pacientes, técnicas quirúrgicas, resultados postoperatorios, complicaciones y secuelas de los tratamientos realizados en la institución de salud.

Esta investigación es de enfoque cuantitativo, de tipo analítico, transversal y retrospectivo, que analizó la información de todos los pacientes con fracturas de meseta tibial que recibieron tratamiento quirúrgico con cirugía abierta y mínima invasiva en la Unidad de Traumatología y Ortopedia del hospital Regional IESS Teodoro Maldonado Carbo, captados desde el 1 de enero del 2015 hasta el 31 de diciembre del 2017. Se determinó los resultados funcionales postratamiento, el porcentaje de pacientes con secuelas o complicaciones derivadas de la cirugía, además de hacer un análisis comparativo de las diversas técnicas quirúrgicas y comparaciones con investigaciones similares en Ecuador y el mundo.
CAPITULO I

1. PLANTEAMIENTO DEL PROBLEMA

1.1 DETERMINACIÓN DEL PROBLEMA

El tratamiento de las fracturas de la meseta tibial es una tarea desafiante para el cirujano, ya que a menudo se asocian con una serie de complicaciones. Los problemas de clasificación ya se han abordado en la literatura; sin embargo, los criterios de evaluación funcional y el manejo óptimo siguen siendo controvertidos. Lo cual crea la necesidad de desarrollar investigaciones que analicen los resultados postoperatorios de las técnicas quirúrgicas empleadas en el tratamiento de las fracturas de meseta tibial, como es la cirugía abierta osteosíntesis con placa y la cirugía mínima incisiva.

A los antecedentes antes mencionados, se suma el hecho del déficit de estudios relacionados a esta línea de investigación (Fracturas de meseta tibial) en los últimos 5 años, lo cual se ve reflejado en los archivos del departamentos e Docencia de este hospital y en la biblioteca de la Universidad de Guayaquil donde no se encontraron estudios que analicen la funcionalidad de la rodilla después del tratamiento quirúrgico de la fractura de meseta tibial.

1.2 PREGUNTAS DE INVESTIGACIÓN

1. ¿Cuáles son las características demográficas y clínicas de los pacientes con fracturas de meseta tibial en cuanto: etiología, grado de exposición y clasificación?

2. ¿Cuál es el tipo de tratamiento quirúrgico empleado en las fracturas de meseta tibial?

3. ¿Cuáles son los resultados funcionales mediante la escala de la Sociedad de rodilla (Knee Society Score), balance articular y balance muscular según la osteosíntesis convencional y mínima invasiva?

4. ¿Cuál es la correlación entre el inicio de la rehabilitación física con los resultados funcionales?
1.3 JUSTIFICACIÓN

El problema que existe en esta investigación es el déficit de estudios que evalúen la función postoperatoria de las fracturas de meseta tibial en la Unidad de Traumatología y Ortopedia del hospital Regional Teodoro Maldonado Carbo en el período desde el 1 de enero del 2015 hasta el 31 de diciembre del 2017, lo cual justifica esta investigación para describir las principales características clínicas de las fracturas, los resultados funcionales mediante una escala validada internacionalmente de uso sencillo, el tiempo de consolidación ósea, resultados radiográficos, balance musculo-articular y complicaciones postoperatorias.

Los resultados de este estudio ofrecieron formas fáciles para llegar al diagnóstico y recomendaciones para optimizar el tratamiento quirúrgico que minimice el desarrollo de complicaciones posoperatorias, mediante la rehabilitación precoz evitando secuelas funcionales. Además, se proporcionó una matriz de datos estadísticos actualizados que reflejan el comportamiento actual de las fracturas de meseta tibial en el hospital. Otro punto importante que justificó esta investigación es que actualmente los resultados de las distintas técnicas quirúrgicas para el tratamiento de la fractura de meseta tibial es controversial, motivando la implementación de escalas de evaluación funcional para estimar los resultados postoperatorios en la Unidad de Traumatología y Ortopedia del Hospital Regional Teodoro Maldonado Carbo.

1.4 VIABILIDAD

Este trabajo de investigación es viable porque la institución donde se realizará la investigación tiene a su disposición el personal de salud constituido por residentes, especialistas, enfermeras y postgradistas, además de equipos tecnológicos, tratamientos y materiales necesarios para dicha investigación. Además, laboré en la institución en calidad de médico residente de postgrado, lo cual facilitará la recolección de los datos del estudio.

El hospital Regional IESS Nº 2 Teodoro Maldonado Carbo tiene la cantidad suficiente de pacientes acordes a la línea de investigación, que representen una muestra significativa capaz de proporcionar resultados que permitan obtener una evidencia confiable de información sobre la fractura de meseta tibial y los resultados funcionales postoperatorios con dos técnicas quirúrgicas. También, el hospital cuenta con el área de
informática y archivo que permitió acceder a las historias clínicas de los pacientes atendidos en el hospital.

Es de interés de la institución que existan datos estadísticos que demuestren la eficacia del tratamiento quirúrgico e las fracturas de meseta tibial, que permita tomar decisiones sobre el mejor método de tratamiento. Además, para el desarrollo del estudio existieron las correspondientes autorizaciones para su ejecución, así como el apoyo y participación del Departamento de Emergencia e imagenología del hospital, además de la aprobación del estudio por los representantes de la Universidad de Guayaquil. También existirá la participación activa del equipo de salud de dichos servicios quienes facilitarán archivos, protocolos utilizados y asesoramiento en la recolección de datos.
1.5 FORMULACIÓN DE OBJETIVOS E HIPÓTESIS

1.5.1 OBJETIVO GENERAL

Establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de las fracturas de meseta tibial en el hospital Regional IESS Nº 2 Teodoro Maldonado Carbo durante el periodo 2015-2017.

1.5.2 OBJETIVOS ESPECÍFICOS

1. Describir las características demográficas y clínicas de los pacientes con fracturas de meseta tibial en cuanto: edad, sexo, etiología, grado de exposición y clasificación.
2. Enunciar el tipo de tratamiento quirúrgico empleado en las fracturas de meseta tibial.
3. Determinar los resultados funcionales mediante la escala de la Sociedad de rodilla (Knee Society Score), balance articular y balance muscular según la osteosíntesis convencional y mínima invasiva.
4. Establecer la correlación entre el inicio de la rehabilitación física con los resultados funcionales.
1.6.3. HIPÓTESIS

H₀: El tratamiento quirúrgico mediante osteosíntesis mínima invasiva de las fracturas de meseta tibial no proporciona mejores resultados funcionales que la osteosíntesis por reducción abierta.

H₁: El tratamiento quirúrgico mediante osteosíntesis mínima invasiva de las fracturas de meseta tibial proporciona mejores resultados funcionales que la osteosíntesis por reducción abierta.

El criterio estadístico para comprobar la hipótesis del investigador (H₁), fue que si la probabilidad obtenida del p-valor es < a 0,05 se rechaza la Ho y se acepta H₁ y si la probabilidad obtenida del p-valor es > a 0,05 se acepta la Ho y se rechaza H₁.

1.7 VARIABLES

1.7.1 VARIABLE INDEPENDIENTE

Fracturas de meseta tibial.

1.7.2 VARIABLES dependiente

Evaluación funcional de la osteosíntesis por reducción abierta y mínima invasiva.:
- Escala de la Sociedad de rodilla (Knee Society Score).
- Consolidación ósea.
- Balance musculo-articular.
- Complicaciones postoperatorias.

1.7.3 VARIABLES INTERVINIENTES

- Edad. Sexo.
- Etiología, mecanismo de traumatismo, grado de exposición.
- Clasificación AO y de Schatzker.
CAPÍTULO II

2. MARCO TEÓRICO

2.1 ANTECEDENTES CIENTÍFICOS

Existen múltiples estudios sobre la los resultados post-operatorios y evaluación funcional de fracturas de meseta tibial. A continuación se presentan las investigaciones más relevantes sobre estas patologías a nivel mundial, según los archivos digitales de Pubmed, Scielo, Medigraphic y Cochrane Collaboration.

van Dreumel R (6), en el 2015 analizó el resultado funcional a medio y largo plazo después de la reducción abierta y la fijación interna de las fracturas de la meseta tibial en pacientes del Viecuri Medical Center de Alemania. Setenta y un pacientes de un grupo de 96 pacientes incluidos completaron la encuesta. Las puntuaciones medianas de KOOS son 89.8% para el dolor, 91.1% para "otros síntomas", 89.7% para la función diaria, 72.5% para deportes y recreación y 75.0% para la calidad de vida. El puntaje promedio de KOOS promedio es de 82.99 puntos. Este estudio demostró que los resultados a mediano y largo plano después de la cirugía de reconstrucción es bueno, pero depende de la complejidad de la lesión y los factores de riesgo asociados.

Un estudio realizado en el 2013 por Manidakis et al (21), donde evaluaron el resultado funcional e incidencia de osteoartritis en 125 casos. Un total de 101 pacientes fueron tratados quirúrgicamente y 24 de forma conservadora. Las fracturas se estabilizaron mediante ORIF o fijación por tornillo percutáneo con o sin un dispositivo de fijación externo. La evaluación funcional con KSS fue buena en 86 casos (68.8%, IC 95% 59.9–76.8%), justo en 30 casos (24.0%, IC 95% 16.8–32.5%) y pobre en nueve (7.2%, IC 95% 3.3–13.2 %). Tres de los casos con malos resultados se observaron en pacientes que desarrollaron infecciones profundas. Los otros seis tenían lesiones múltiples que afectaron significativamente el resultado.

Kant et al (25), reporta en su estudio la evaluación del resultado funcional de las fracturas de la meseta tibial manejadas por diferentes modalidades quirúrgicas. Loa autores analizaron los resultados funcionales de 58 de las fracturas de la meseta tibial tratadas quirúrgicamente y el resultado funcional se evaluó con los criterios modificados
de Rasmussen. La mayoría de los pacientes pertenecían a grupos de edad adultos joven (58,62%) y el sexo masculino (79,31%) fue el predominante. Los accidentes de tráfico fueron el factor etiológico más frecuente (70,69%). La evaluación del funcional según los criterios de Rasmussen modificados al final de los 12 meses mostró un excelente resultado funcional en 41 (70,68%), bueno en ocho (13,79%), regular en cinco (10,34%) y deficiente en cuatro (6,9%) pacientes.

Otra investigación reportada por Persiani P (26), sobre el análisis de riesgo en fracturas de meseta tibial y la asociación entre gravedad, tratamiento y resultado clínico. El autor evaluó una muestra de 67 individuos, 50 hombres y 17 mujeres. La edad media es de 46 (rango 22-72). La mediana de la puntuación total del sistema de calificación funcional de Rasmussen resultó ser igual a 26; en comparación con el grupo de control, existe una fuerte relación entre el uso de placas solas y el riesgo de obtener un resultado clínicamente menos efectivo (OR = 5,48; p = 0,003) aún más cuando se compara Schatzker tipo IV, V y VI (OR = 13; p = 0,0073). Con respecto al SF36, a los pacientes tratados con placa solo se les otorgó la puntuación más baja. El tratamiento de las fracturas más severas de la meseta tibial mediante la fijación interna con placas puede mejorararse con el uso de sustitutos óseos.

Giannotti et al (14), analizaron las placas angulares estables en fracturas tibiales metaepifisarias proximales, realizando la evaluación clínica y funcional. Un total de 75 casos de fractura de meseta tibial con placas angulares estables se analizaron. Se utilizó la puntuación de Knee Society para la evaluación clínica y funcional. La evaluación clínica y funcional, realizada por KSS y Rasmussen Score, resaltó el alto porcentaje de resultados buenos a excelentes (más del 90%). En todos los casos, el rango de movimiento fue bueno con una flexión> 90 °. Se concluyó que las placas angulares estables permiten obtener una buena estabilidad primaria, lo que permite una recuperación temprana de la articulación con un excelente rango de movimiento.

Un estudio realizado por Khatri et al (15), en el departamento ortopédico de Jai Prakash Narayan Apex Trauma Centre, en Nueva Delhi, India sobre la evaluación funcional en fracturas de meseta tibial de alta energía (Schatzker tipo V y tipo VI) tratadas por reducción abierta y fijación interna. La evaluación funcional de los pacientes se realizó con puntuación de rodilla de Oxford. Un total de 54 casos (83%) tuvieron una
puntuación de rodilla de Oxford entre 40 y 48. Siete (10,7%) tuvieron una puntuación entre 30 y 39, tres (4,6%) tuvieron una puntuación entre 20 y 29, y un paciente (1,5%) tuvo una puntuación de 18. Los autores concluyen que la reducción abierta y la fijación interna en las fracturas de meseta tibial de alta energía proporcionan buenos resultados funcionales en casos seleccionados adecuadamente.

Prat-Fabregat S (16), describe las estrategias de tratamiento para las fracturas de la meseta tibial. El autor expone que las fracturas de meseta tibial son lesiones complejas producidas por traumas de alta o baja energía. Afectan principalmente a adultos jóvenes o a la población de 'tercera edad' y tienen lesiones asociadas de tejidos blandos que afectarán su tratamiento. Se recomienda el tratamiento secuencial (por etapas) (fijación externa seguida de osteosíntesis definitiva) en los patrones de fractura más complejos. La reducción abierta y la fijación interna (ORIF) es el tratamiento estándar para estas fracturas.

2.2 BASES TEÓRICAS

FRACTURAS DE MESETA TIBIAL

La meseta tibial es una de las áreas de carga más críticas en el cuerpo humano; las fracturas de la meseta afectan la alineación de la rodilla, la estabilidad y el movimiento (1). La detección temprana y el tratamiento adecuado de estas fracturas son fundamentales para minimizar la discapacidad del paciente y reducir el riesgo de complicaciones documentadas, en particular la artritis postraumática. Sir Astley Cooper describió por primera vez las fracturas de la tibia proximal en 1825 (2,3). La ira trató la mayoría de las fracturas mínimamente desplazadas con la movilización temprana de la reducción abierta y la fijación interna (ORIF) de las fracturas condilares tibiales, y Sarmiento popularizó el arriostramiento funcional de la mayoría de las fracturas condilares tibiales (4).

ANATOMÍA

La rodilla es una articulación compleja, expuesta a fuerzas que pueden exceder cinco veces el peso del cuerpo. La articulación ha mejorado la movilidad a costa de la estabilidad. La tibia proximal se expande desde la diáfisis hasta la zona metafisaria (3). El contacto se realiza con la cabeza del peroné en el cuadrante posterolateral. La
superficie de la meseta tibial tiene una porción portadora de peso medial y una lateral y una eminencia intercondílea, que es tanto no articular como no portadora de peso. La meseta medial es generalmente más grande que la meseta lateral (5).

La eminencia intercondilar proporciona fijación a los meniscos medial y lateral y los ligamentos cruzados anterior y posterior. La rodilla normal está en alineación valgo fisiológica (2). La mayor parte de la carga transmitida a través de la rodilla es medial a la eminencia, por lo tanto, la rodilla tiene hueso esponjoso fuerte (1,3). Debido a que el cóndilo medial está redondeado en comparación con el cóndilo lateral, parte de la superficie articular anterior de la meseta lateral está expuesta, especialmente durante la extensión (4). Esto hace que la meseta lateral sea más susceptible a la lesión ósea y por esto las fracturas de la meseta lateral son más comunes que las de la meseta medial.

CLASIFICACIÓN

Ha habido muchas clasificaciones de fracturas de meseta tibial, de las cuales las siguientes son probablemente las más significativas históricamente.

En 1900, Muller propuso un sistema de clasificación para las fracturas de la meseta tibial que clasificaban las fracturas de acuerdo con la cantidad de afectación articular. Hohl y Luck propusieron una clasificación de fracturas en meseta que incluía las fracturas no desplazadas, la depresión local, la depresión dividida y las fracturas por división. Hohl luego expandió la clasificación para incluir fracturas conminutas. En 1981, Moore propuso un sistema de clasificación para fractura-dislocación del cóndilo tibial que tomaba en consideración la lesión de los tejidos blandos (6).

Schatzker et al propusieron un sistema de clasificación de fracturas de cóndilo basado en el patrón de fractura y la anatomía de los fragmentos. Este sistema de clasificación, ampliamente aceptado y utilizado en la actualidad, divide estas fracturas en los siguientes seis tipos (6):

Tipo I: es una fractura en cuña o fractura de la cara lateral de la meseta, generalmente como resultado de valgas y fuerzas axiales; el fragmento de cuña no está comprimido (deprimido) porque el hueso esponjoso subyacente es fuerte; este patrón generalmente se observa en pacientes más jóvenes (6).
Tipo II: es una cuña lateral o fractura dividida asociada con la compresión; el mecanismo de lesión es similar al de una fractura de tipo I, pero el hueso subyacente puede ser osteoporótico e incapaz de resistir la depresión, o la fuerza puede haber sido mayor (6).

Tipo III - Esta es una fractura por compresión pura de la meseta lateral; como resultado de una fuerza axial, la depresión generalmente se localiza lateralmente o centralmente, pero puede involucrar cualquier porción de la superficie articular (6).

Tipo IV: esta es una fractura que involucra la meseta medial; como resultado de fuerzas de compresión axial o en varo, el patrón puede dividirse solo o dividirse con compresión; debido a que esta fractura involucra a la meseta medial más grande y más fuerte, las fuerzas que causan este tipo generalmente son mayores que las asociadas con los tipos I, II o III (6).

Tipo V: esta fractura incluye elementos divididos de los cóndilos medial y lateral y puede incluir compresión articular medial o lateral, generalmente como resultado de una fuerza axial pura que ocurre mientras la rodilla está en extensión (6).

Tipo VI: esta es una fractura compleja bicondilar en la que los componentes condilares se separan de la diáfisis; la depresión y la impactación de los fragmentos de fractura son la regla; este patrón es el resultado de un trauma de alta energía y diversas combinaciones de fuerzas (6).

ETIOLOGÍA

El mecanismo más común que resulta en una fractura meseta tibial es una fuerza en valgo con carga axial (2). De estas fracturas, el 80% son lesiones relacionadas con vehículos de motor y el resto son lesiones relacionadas con los deportes. Las lesiones relacionadas con guardabarros o guardabarros de una colisión vehículo-peatón constituyen más del 25% de las fracturas de la meseta tibial (5). El trauma puede ser directo o puede estar relacionado con una caída desde una altura, un accidente industrial o una lesión deportiva. Las fracturas de la meseta tibial pueden ser de baja o alta energía (1,5,6). Las fracturas de baja energía ocurren en el hueso osteoporótico y típicamente son fracturas deprimidas. Las fracturas de alta energía a menudo son el resultado de un
trauma relacionado con un vehículo de motor, y el patrón de fractura más común en este grupo es una fractura por división (7).

EPIDEMIOLOGÍA

Más del 50% de los pacientes que sufren una fractura de meseta tibial tienen 50 años o más. El aumento de la frecuencia de fracturas de la meseta tibial en mujeres mayores se debe a la mayor prevalencia de osteoporosis en estos individuos. Las fracturas de la meseta tibial en pacientes más jóvenes son comúnmente el resultado de lesiones de alta energía (7).

HISTORIA Y EXAMEN FÍSICO

Se requiere una evaluación clínica completa, incluida la evaluación de los tejidos blandos para determinar si hay un síndrome compartimental y si el paciente ha sufrido una lesión neurovascular. Se puede realizar una prueba de esfuerzo suave con la pierna en extensión para evaluar la estabilidad de los ligamentos y evaluar cualquier signo de desplazamiento de la fractura (7).

Aproximadamente el 50% de las rodillas con fracturas de meseta tibial cerradas tienen lesiones de los ligamentos cruzados y los meniscos que generalmente requieren una reparación quirúrgica. Debido al estrés en valgo en el momento del impacto, el ligamento colateral medial tiene mayor riesgo que el ligamento lateral colateral; sin embargo, la alteración del ligamento lateral colateral es motivo de gran preocupación debido a posibles lesiones en el nervio peroneo y los vasos poplíteos. Las lesiones de luxación-luxación son más comunes con las lesiones de meseta medial y conllevan un mayor riesgo de daño del nervio peroneo (7).

ESTUDIOS DE IMAGEN

Radiografía

La mayoría de las fracturas de la meseta tibial son fáciles de identificar en proyecciones anteroposteriores (AP) y laterales estándar de la rodilla. Las vistas laterales no deben considerarse adecuadas si un componente rotacional oscurece la visualización de los cóndilos femorales como una sola unidad. La mala alineación rotacional puede llevar a zonas de lesión omitidas y una estimación imprecisa del grado de depresión articular
(5). Con fracturas de división vertical mínimamente desplazadas, la línea de fractura a menudo se encuentra en un plano oblicuo y, por lo tanto, no es visible en una radiografía AP o lateral. Deben agregarse proyecciones oblicuas si se sospecha una fractura de meseta tibial no desplazada, pero no se ve en las proyecciones estándar (6,7).

Los siguientes signos radiológicos sutiles pueden indicar la presencia de una fractura meseta subyacente:
- Lipohemartrosis - La presencia de un nivel de grasa / líquido en el receso suprapatelar en la proyección lateral de la viga horizontal de la rodilla indica que se ha producido una fractura y ha permitido que la médula grasa ingrese a la articulación (7).
- Densidad trabecular aumentada debajo de la meseta lateral en una película AP: el cóndilo tibial medial normalmente tiene una mayor densidad trabecular porque tiene más peso corporal (7).
- Desalineación de los cóndilos femorales y la tibia en la vista AP (7).

Una proyección AP de la rodilla, en ángulo de 15 ° caudalmente puede proporcionar una evaluación más precisa de la profundidad de la depresión de la superficie de la meseta (1). Las radiografías de tracción proporcionan una imagen más clara de la configuración de fractura después de restaurar la alineación anatómica (4,5). Las áreas de pérdida ósea que resultan de la trituración se pueden mapear, y se puede determinar el tamaño y la longitud apropiados de los implantes necesarios. Las vistas correspondientes de la rodilla y la extremidad no lesionadas son necesarias para que cada paciente reciba una restauración precisa de la longitud y la alineación (7).

Tomografía computarizada

Al adquirir cortes axiales delgados a través de la rodilla y reconstruir los datos de imagen en los planos sagital y coronal, la tomografía computarizada (TC) proporciona información más detallada. La información obtenida de una tomografía computarizada puede ayudar a determinar el mejor abordaje quirúrgico basado en los planos de fractura que se ven en las imágenes de la computadora. Las reconstrucciones tridimensionales espirales (helicoidales) de la TC producen una mejor y más precisa demostración de la fractura de la meseta tibial. Presentan la anatomía en la vista que verá el cirujano cuando se realice la cirugía (8).
Resonancia magnética

La resonancia magnética (RM) es reconocida como una herramienta confiable y precisa para evaluar las lesiones meniscales, colaterales y ligamentosas cruzadas, así como para identificar fracturas ocultas de la meseta tibial (8). Un hematoma óseo está indicado por cambios epifisarios y metafisarios en las imágenes ponderadas en T1 y T2. Las señales indican cambios óseos articulares y corticales normales y reflejan cambios en la médula ósea. Se cree que representan edema, hiperemia, hemorragia y microfractura. Las fracturas de meseta pueden visualizarse en resonancias magnéticas, incluso cuando las radiografías de película normal son normales. Una ventaja importante que tiene la MRI sobre la TC es que la MRI no usa radiación ionizante. Las desventajas incluyen el mayor costo y el mayor tiempo necesario para completar el estudio (25 minutos para MRI frente a 20 segundos para CT), lo que significa que el artefacto de movimiento puede ser un problema (7,8).

TRATAMIENTO

Todas las fracturas de alta energía deben revisarse inmediatamente para verificar la integridad de los tejidos blandos y el síndrome compartimental inminente. La administración general puede ser una de las siguientes:

- Medidas de Antiedema: aspiración de articulaciones, reposo, inmovilización, compresión, elevación y otras medidas antiedema se recomiendan en pacientes con fracturas de alta energía rodeadas de evidencia de tejidos blandos comprometidos (p. Ej., Ampollas en la piel, edema); las extremidades con características sugestivas de síndrome compartimental no deben tratarse con medidas antiedema (8).

- Tracción: puede usarse como modalidad de gestión temporal o definitiva. La tracción del calcáneo puede continuarse durante el tratamiento de movilización de tracción de fracturas meseta seleccionadas sin incongruencia articular gruesa; la tracción está contraindicada en pacientes sometidos a reparaciones vasculares (8).

- Desbridamiento de lesiones abiertas - Las fracturas abiertas deben abordarse de acuerdo con las pautas universales; los pacientes se someten de manera óptima a un desbridamiento quirúrgico de heridas traumáticas abiertas dentro de las 8 horas posteriores a la lesión; Se realiza un desbridamiento agresivo de heridas abiertas por fractura, incluida la eliminación de restos contaminantes y cualquier fascia, músculo y hueso desvitalizados (8).
- Fasciotomía por síndrome compartimental inminente: se requiere tratamiento de emergencia porque una demora en el tratamiento se correlaciona directamente con mayor daño; si hay signos de síndrome compartimental, se realizan cuatro fasciotomías compartimentales (8).

- Fijación del fijador externo: las fracturas cerradas se someten a la colocación de un fijador externo en función de la estabilidad del paciente y la disponibilidad de la sala de operaciones, a menos que el paciente tenga signos de síndrome compartimental; los pacientes sometidos a desbridamiento por fracturas abiertas y fasciotomía por síndrome compartimental pueden tratarse con un fijador externo temporal hasta que mejore la condición de los tejidos blandos (8).

El tratamiento de estas fracturas se rige por la vascularización (tejido local y distal), la condición de los tejidos blandos y la presencia o ausencia de síndrome compartimental. No todas las fracturas de la meseta tibial requieren cirugía. El primer desafío en el tratamiento de las fracturas tibiales superiores es decidir entre el tratamiento quirúrgico y el no quirúrgico (8).

TERAPIA NO QUIRÚRGICA

En el pasado, el yeso de pierna larga y la movilización de tracción se usaban para algunas fracturas; sin embargo, ahora se prefiere el programa Sarmiento de refuerzo funcional de yeso.

Las indicaciones para el tratamiento no quirúrgico son las siguientes (9):
- Fracturas estables no desplazadas
- Fracturas mínimamente desplazadas o deprimidas
- Fracturas de borde submeniscal
- Fracturas en pacientes ancianos, de baja demanda u osteoporóticos

Las ventajas del tratamiento no quirúrgico son las siguientes (9):
- Técnica simple.
- Sin trauma quirúrgico o riesgo de sepsis.
- Estancia hospitalaria más corta.
- Movilización temprana de la articulación (solo si se usa un aparato ortopédico funcional) y retraso en el soporte del peso.
Las desventajas del tratamiento no quirúrgico son las siguientes (9):
- Riesgo de desplazamiento y necesidad de cirugía (seguimiento con estudios de imágenes cada 2 semanas durante 6 semanas, restricción de actividad durante 4-6 meses).
- Inmovilización prolongada y complicaciones relacionadas: si se utiliza tracción, se obtiene un buen movimiento a costa de una larga estadía en el hospital y el riesgo de infección del tracto de aguja; las complicaciones relacionadas con la recumbencia pueden incluir embolia pulmonar o flebitis.
- Rigidez de la articulación (si la inmovilización es > 2-3 semanas).
- Inestabilidad y artritis postraumática a largo plazo.

TERAPIA QUIRÚRGICA

El desplazamiento de la fractura que varía de 4-10 mm puede tratarse de forma no quirúrgica; sin embargo, un fragmento deprimido de más de 5 mm debe ser elevado e injertado (8,9). Las siguientes son indicaciones absolutas para la cirugía (9):
- Fracturas de meseta abierta.
- Fracturas con un síndrome compartimental asociado.
- Fracturas asociadas con una lesión vascular.

Las siguientes son indicaciones relativas para la cirugía (9):
- Mayoría de las fracturas bicondíleas desplazadas.
- Fracturas condilares mediales desplazadas
- Fracturas de meseta consecutivas que producen inestabilidad articular

Las contraindicaciones para el tratamiento quirúrgico incluyen lo siguiente (9):
- Presencia de una envoltura de tejido blando comprometida (para una reducción abierta inmediata).
- Fracturas que no producen inestabilidad o deformidad articular y que, por lo tanto, pueden tratarse con modalidades no quirúrgicas.

Las técnicas abiertas o asistidas por arthroscopia se consideran para fracturas con desplazamiento, depresión de las superficies condilares o ambas. La terapia quirúrgica abierta puede ser inmediata o por etapas (9).
La fijación interna se puede lograr por medio de lo siguiente (9):
- Fijación biológica - Fijación de tornillo, osteosíntesis de placa mínimamente invasiva, sistema de estabilización menos invasivo
- Fijación asistida por arthroscopia.
- Doble placa convencional.

La fijación externa se puede lograr con lo siguiente (9):
- Fijador de Ilizarov.
- Fijador híbrido.

PRINCIPIOS QUIRÚRGICOS

Los objetivos finales del tratamiento de fractura meseta tibial son restablecer la estabilidad de la articulación, la alineación y la congruencia articular, conservando al mismo tiempo el rango completo de movimiento (9). En tal caso, se puede lograr la función de rodilla sin dolor y prevenir la artritis postraumática. Si el desplazamiento de la fractura es lo suficientemente grande como para producir inestabilidad articular, se debe seleccionar la administración operativa. Las técnicas actuales de fijación interna incluyen ligamentotaxis y fijación percutánea. Cuando la conminución extensa y los tejidos blandos dañados prohíben el uso de la fijación interna, los fijadores externos circulares son una excelente alternativa para la administración (10).

Las fracturas de meseta unicondilar y bicondilar en pacientes jóvenes con un buen aporte óseo y solo unos pocos fragmentos articulares bien definidos responden bien a las modernas técnicas de reducción y fijación interna. Para personas mayores osteopénicas con una fractura de meseta bicondilar o para pacientes que no pueden hacer frente a un cuidado de clavija adecuado, puede ser preferible un refuerzo funcional, posiblemente seguido de una artroplastia total de rodilla (10).

Independientemente de si se utilizan técnicas de fijación internas o externas, el manejo adecuado de los tejidos blandos es vital para el manejo exitoso de las lesiones graves de la tibia proximal. Yu et al revisaron el tratamiento con sulfato cálcico de alta potencia, Lasanianos et al siguieron pacientes tratados con aloinjertos esponjosos liofilizados. Y Russel et al compararon los resultados de los injertos óseos autógenos y el cemento fosfato de calcio (10).
La fijación de las fracturas de la meseta tibial debe ser rígida y la estabilidad de la fractura debe mantenerse. Si los implantes de fijación son obviamente sueltos o proporcionan una fijación inadecuada, deben eliminarse. La sepsis intraarticular combinada con la inestabilidad de la fijación da como resultado una rápida condrólisis y destrucción de la articulación (10).

TRATAMIENTO ESPECÍFICO DE LAS FRACTURAS DE MESETA TIBIAL

Tipo I

La proyección de imagen de resonancia magnética (MRI) preoperatoria o la artroscopia es necesaria para visualizar el menisco lateral y la fractura (10). Cuando la fractura se desplaza, el menisco lateral comúnmente se separa periféricamente y no pocas veces queda atrapado dentro del sitio de la fractura. Si hay una rotura periférica, con o sin encarcelamiento del menisco en el sitio de la fractura, se recomienda la reducción abierta con fijación interna (ORIF) con reparación meniscal (8,10). Si el menisco está intacto, se prefiere la reducción cerrada y la fijación del tornillo esponjoso canulado percutáneo. La calidad de la reducción se evalúa artroscópicamente o con un intensificador de imágenes. Si la reducción satisfactoria no es posible por medios cerrados, se usa la reducción abierta (11).

Tipo II

Con inestabilidad articular, la cirugía debe usarse para tratar los fragmentos articulares impactados (ver las imágenes a continuación). En estas fracturas, el fragmento deprimido debe ser elevado y complementado con un injerto óseo. Esto puede realizarse ya sea intraarticularmente, elevando el asta anterior del menisco lateral, o haciendo una ventana en el cóndilo lateral y elevando el fragmento con soporte del material del injerto y fijación con una placa de contrafuerte (11).

Si la depresión es anterior o central, una incisión de la piel parapatelar lateral recta con exposición de la articulación submeniscal transversal es mejor. La preservación y reparación del menisco lateral es el objetivo (7). Con el uso de un impactador desde abajo, los fragmentos de la fractura se disimulan, elevan y soportan con un injerto óseo. En el caso de una conminución mínima del cóndilo lateral, son suficientes los tornillos...
esponjosos con arandelas, mientras que se recomienda una placa de contrafuerte para una fractura conminuta en el hueso osteoporótico blando (11).

Tipo III

Si la depresión es pequeña y la articulación permanece estable, se prefiere el tratamiento conservador en personas de edad avanzada. Sin embargo, si la articulación es inestable en un paciente fisiológicamente más joven, generalmente está indicada la cirugía. La fractura deprimida se puede visualizar con artroscopia o debajo de un brazo en C. Se hace una ventana en la región metafisaria, la superficie articular deprimida se eleva, y la porción subarticular se sostiene con un injerto y luego se soporta con uno o dos tornillos canulados o con una placa (11).

La reducción abierta formal y la fijación de la placa para las fracturas Schatzker tipo I-III es una alternativa a la reducción y fijación artroscópicamente asistida. La visualización directa de la reducción de la superficie de la articulación se puede obtener a través de una artrotomía submeniscal o mediante la separación del asta anterior del menisco lateral mediante un abordaje lateral. En casos con un desplazamiento amplio, fractura asociada de la cabeza del peroné y hueso osteoporótico, el refuerzo con una placa proporciona una mejor fijación que los tornillos solos y puede disminuir el riesgo de colapso de los fragmentos elevados. Si tiene dudas, se debe usar contrafuertes (11).

Tipo IV

Debido a que las fracturas de meseta tibial tipo IV son lesiones de alta energía, pueden estar asociadas con lesiones de tejidos blandos y, a veces, lesiones neurovasculares y dislocación de la rodilla, lo que aumenta la inestabilidad de la rodilla. El tratamiento no quirúrgico está indicado solo para las fracturas no desplazadas. Los pacientes con un buen stock de huesos que han sufrido traumatismos de baja energía se tratan mejor con reducción cerrada y fijación de tornillo esponjoso canulado percutáneo. En aquellos con fracturas de alta energía con desgarro del ligamento lateral colateral o fractura de la cabeza del peroné, se prefiere un abordaje parapatelar medial o medial y un abordaje extraperióstico (11).

La fractura debe ser elevada, reducida y sostenida por una placa de refuerzo, y los tejidos blandos deben repararse. Si la eminencia intercondilar con el cruzado se
avulsiona, se debe reducir y fijar con un tira-fondo o lazo de alambre. En pacientes con un fragmento posterior predominante, puede ser necesaria una incisión posteromedial adicional (5). El mal pronóstico asociado con estas fracturas es el resultado de una lesión neurovascular relacionada, la inestabilidad de los tejidos blandos, el aumento de las demandas sobre la superficie articular de la meseta medial con el peso y las fuerzas de alta energía involucradas en la producción de estas fracturas (9,10,11).

Tipos V y VI

Las fracturas de la meseta tibial tipo V y VI (ver las imágenes a continuación) generalmente se deben a fuerzas de alta energía y a menudo se asocian con el compromiso de los tejidos blandos circundantes (1). En estos casos, se debe evitar la exposición extensible de la tibia superior con la colocación subperióstica de implantes grandes. Este enfoque se ha asociado con un mayor riesgo de dehiscencia de la herida e infección (2,4,5).

Las fracturas que involucran a ambos cóndilos rutinariamente requieren reparación. La meseta con la superficie articular más severamente afectada debe ser plateada primero (8). El lado menos afectado debe tratarse con mínima fijación biológica mediante implantes percutáneos, incisiones posteromediales limitadas o un pequeño fijador externo para minimizar la exposición y la extracción ósea. Con frecuencia se trituran, y el eje se puede disociar con la metáfisis (11). Muchas de estas fracturas, retratadas en las siguientes imágenes, se tratan mejor con una fijación externa.

Las indicaciones, ventajas y desventajas de la fijación percutánea con tornillos se pueden resumir de la siguiente manera (12):
- **Indicaciones** - Fracturas tipo I no desplazadas.
- **Ventajas** - Técnica simple con mínima lesión en los tejidos blandos.
- **Desventajas** - No aplicable para otros patrones de fractura.

Las indicaciones, ventajas y desventajas de la elevación percutánea y la fijación con tornillos se pueden resumir de la siguiente manera (12):
- **Indicaciones** - Fracturas tipo II y III; injerto óseo si la depresión es grave (> 10 mm) en el hueso osteoporótico.
- **Ventajas** - Técnica simple con mínima lesión en los tejidos blandos.
- Desventajas - No es útil para fracturas de alta energía con lesiones de ligamentos y meniscos.

Las indicaciones, ventajas y desventajas de la elevación asistida por artroscopia y la fijación con tornillos se pueden resumir de la siguiente manera (12):

- Indicaciones - Fracturas tipo I, II, III y IV con lesiones ligamentosas y meniscales.
- Ventajas - Lesión mínima de los tejidos blandos; ayuda a diagnosticar y tratar lesiones intraarticulares; ayuda a reducir las fracturas articulares deprimidas; permite el lavado de las articulaciones
- Desventajas - No es útil para fracturas de alta energía.

Las indicaciones, ventajas y desventajas de ORIF con o sin injerto óseo se pueden resumir de la siguiente manera (12, 13):

- Indicaciones - Fracturas de tipos III, IV, V y VI sin lesión de tejidos blandos.
- Ventajas - Permite la reducción anatómica con fijación interna rígida e injerto óseo; facilita la exploración conjunta y el tratamiento de lesiones intraarticulares.
- Desventajas: no se debe realizar en el contexto agudo en presencia de lesión de tejidos blandos; innecesario para fracturas tipo I.

Las indicaciones, ventajas y desventajas de la fijación biológica interna se pueden resumir de la siguiente manera (12,13):

- Indicaciones - Fracturas de tipos IV, V y VI con desplazamiento y conminución míimos; pacientes politraumatizados.
- Ventajas - Técnica simple con mínima lesión en los tejidos blandos; retención de hematoma de fractura.
- Desventajas - No es útil en fracturas severamente conminutas y deprimidas.

Las indicaciones, ventajas y desventajas de los fijadores externos (fijador de media clavija, fijador de anillo o fijador híbrido) se resumen de la siguiente manera (12,14):

- Indicaciones - Lesiones abiertas y fracturas de alta energía (tipos IV, V y VI) con lesión de tejidos blandos; fracturas con lesión vascular con o sin síndrome compartimental; pacientes politraumatizados.
- Ventajas - Mínima lesión en los tejidos blandos.
- Desventajas - Fijación no rígida; difícil de lograr la reducción de la fractura anatómica; rigidez en las articulaciones; infecciones del tracto pin; artritis séptica.
CUIDADO POSTOPERATORIO

Recuperar el rango de movimiento es un desafío para los pacientes, como los siguientes:
- Aquellos que no pueden participar activamente en la rehabilitación.
- Aquellos que pueden tener lesiones en los tejidos blandos que impiden el rango de movimiento inmediato.
- Aquellos que han tenido pasadores de fijación externa insertados cerca de su cuádriceps (15).

Debido a la discapacidad potencial asociada con la contractura de flexión crónica, después de la cirugía, estos pacientes deben colocarse en una rodillera con bisagras que está bloqueada en extensión (16). Se usa una protuberancia acolchada debajo del talón tanto en la cama del hospital como en el hogar después del alta para maximizar la extensión de la rodilla. El movimiento está restringido hasta que las heridas quirúrgicas y traumáticas estén secas (17). El movimiento pasivo continuo comienza cuando las heridas están secas; el objetivo es la extensión completa y 90° de flexión dentro de 5-7 días. Si otras lesiones lo permiten, el paciente se moviliza con una abrazadera con bisagras bloqueada en extensión durante 6 semanas. Para los estudios de seguimiento, ver Chan et al y Rossi et al (18).

COMPLICACIONES

Las complicaciones se pueden dividir en etapas tempranas (p. Ej., Pérdida de reducción, trombosis venosa profunda, infección) o tardías (p. Ej., Pseudoartrosis, rotura de implantes, artritis postraumática). La mayoría de las complicaciones tempranas se pueden ver como fallas biológicas, mientras que las complicaciones tardías a menudo se asocian con problemas mecánicos (19).

Las complicaciones tempranas incluyen lo siguiente (20,24):
- Síndrome compartimental.
- Lesiones vasculares.
- Problemas de hinchazón y curación de heridas.
- Infecciones.
- La trombosis venosa profunda.
- Lesiones nerviosas.
Las complicaciones tardías incluyen lo siguiente:
- Rigidez de la rodilla.
- Inestabilidad de rodilla.
- Deformidades angulares.
- Colapso tardío.
- Pseudoartrosis.
- Osteoartrosis.

MONITOREO A LARGO PLAZO

Las precauciones que no tienen peso generalmente continúan por 12 semanas. Se recomienda la flexión activa y la extensión pasiva durante 6 semanas, después de lo cual se inicia la extensión activa de la rodilla (21,22). La extensión activa de la rodilla se retrasa si se requirió ORIF de una avulsión de tubérculo tibial. Un estudio de Garner et al encontró que la extracción electiva de los implantes después de la fractura de meseta tibial ORIF condujo a mejores resultados clínicos a los 12 meses (23,24).
CAPITULO III

3. MATERIALES Y MÉTODOS

3.1 MATERIALES

3.1.1 LOCALIZACIÓN

Hospital Regional Nº 2 IESS Teodoro Maldonado Carbo

3.1.2 CARACTERIZACIÓN DE LA ZONA DE TRABAJO

El Hospital Regional Nº 2 IESS Teodoro Maldonado Carbo, localizado en la avenida 25 de julio, es una institución de salud nivel III, que cuenta con especialidades y subespecialidades para la atención médica de los afiliados del Instituto Ecuatoriano de Seguridad Social de la provincia del Guayas, además de ser un hospital de referencia a nivel nacional, que presta atención a pacientes del todo el país. La Unidad de Traumatología y Ortopedia del Hospital Regional Nº 2 IESS, es un departamento completo que cuenta con servicio de emergencia, consulta externa, hospitalización y quirófanos inteligentes. Esta constituida por 24 especialistas, cuenta con las subespecialidades de Reemplazo articular, Tumores óseos, Artroscopía, Cirugía de pie/tobillo y Cirugía de columna vertebral.

3.1.3 PERIODO DE INVESTIGACIÓN

Fue durante el período del 1 de enero del 2007 hasta 31 de diciembre del 2017.

3.1.4 UNIVERSO Y MUESTRA

3.1.4.1 UNIVERSO:

El universo está constituido por todos los pacientes con diagnóstico de traumatismo de miembro pélvico atendidos en la consulta externa del Hospital Regional IESS Teodoro Maldonado Carbo durante el periodo de estudio desde 16 de octubre del 2015 hasta el 16 de octubre del 2017.

3.1.4.2 MUESTRA:

La muestra esta conformada por los pacientes con fractura de meseta tibial que tuvieron tratamiento quirúrgico en la Unidad de Traumatología y Ortopedia del Hospital
Regional IESS Teodoro Maldonado Carbo durante el periodo de estudio y que cumplieron con los criterios de inclusión de la investigación. No se realizó calculo de tamaño de la muestra ya que la muestra será de tipo no probabilística por conveniencia.

3.1.5 CRITERIOS DE INCLUSIÓN/ EXCLUSIÓN

3.1.5.1 CRITERIOS DE INCLUSIÓN

- Todos los pacientes adultos con diagnóstico de fractura de meseta tibial que recibieron tratamiento quirúrgico en el Hospital Regional IESS Teodoro Maldonado Carbo en el periodo 2015-2017.
- Pacientes con historia clínica completa.
- Pacientes de mayores de 18 años.

3.1.5.2 CRITERIOS DE EXCLUSIÓN

- Pacientes operados en prestadores externos del IESS o clínicas privadas.
- Pacientes con fracturas en terreno patológico.
- Pacientes no inmunocompetentes.
- Pacientes con historia clínica incompleta.

3.2 MÉTODOS

3.2.1 TIPO DE INVESTIGACIÓN

- Según la intervención del investigador es de tipo observacional.
- Según la planificación de la toma de datos es de tipo retrospectivo.
- Según el número de ocasiones en que se mide la variable de estudio es de tipo transversal.
- Según el número de variables de interés es de tipo analítico correlacional.

3.2.2 DISEÑO DE INVESTIGACIÓN

- No experimental
- Epidemiológico
3.2.3 NIVEL DE INVESTIGACIÓN

Relacional, porque demostró dependencia entre eventos, que permite hacer asociaciones y correlaciones.

3.2.4 OPERACIONALIZACIÓN DE EQUIPOS E INSTRUMENTOS

Se empleó la historia clínica digital (Sistema AS-400) como instrumento principal de trabajo, mediante la cual se realizó la recolección de datos. Se confeccionó una matriz de datos en Microsoft Excel 2010 de acuerdo a las variables del estudio de la siguiente manera (Anexo 1): Edad, sexo, etiología, exposición, clasificación Schatzker, tipo de tratamiento, rangos de movilidad (flexión, extensión) y puntuación de Knee Society Score. La selección de pacientes se baso en base a los criterios de inclusión y exclusión del estudio y acorde al código CIE-10 de la Clasificación internacional de enfermedades, aun vigente en el Hospital Regional IESS Teodoro Maldonado Carbo: (S82.1) Fractura de la epífisis superior de la tibia.

Los resultados funcionales fueron valorados de acuerdo a la escala de la Sociedad de rodilla (Knee Society Score) la cual consta de dos partes: una valoración articular y una valoración de la función, cada una de ellas con un puntaje máximo de 100. Considerándose excelentes resultados entre 80 y 100 puntos, buenos resultados entre 70 y 79, regular entre 60 y 69 y pobre resultado menor de 60 puntos.

3.2.5 ANÁLISIS DE LA INFORMACIÓN

El análisis estadístico se realizó en el programa SPSS versión 21, que sirvió para el procesamiento de la información recolectada, organización de variables, diseño y confección de tablas e ilustraciones que fueron empleadas en este trabajo de investigación. Se empleó la función transformar variables para la creación de grupos etarios en forma de una variable de intervalos en función de la variable continua numérica edad. También se re-categorizó la variable numérica continua de puntuación KSS pre-quirúrgica y postquirúrgica en la variable categórica de resultados KSS.

Se empleo un intervalo de confianza del 95% y un valor alfa del 5% (p-value), se consideró significativos valores de \(p < 0.05 \) para confirmar o rechazar la hipótesis y para establecer los análisis de asociación (chi cuadrado) o de correlación (correlación de Pearson). Se empleó tanto estadística de tipo descriptiva (medidas de tendencia central)
e inferencial para la interpretación de los resultados.

3.2.6 ASPECTOS ÉTICOS Y LEGALES

En el presente estudio se respetaron las normas éticas de la investigación científica acordes a las normas de Helsinki del 2011. Se respeto el anonimato de los pacientes y la confidencialidad de los resultados, los cuales serán usados solo con fines académicos e investigativos. Además, es un estudio sin riesgo, porque no hubo contacto directo con los pacientes, por ser un estudio de tipo observacional indirecto y retrospectivo.
3.2.7 CUADRO DE OPERACIONALIZACIÓN DE LAS VARIABLES

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>DEFINICION</th>
<th>INDICADOR</th>
<th>ESCALA VALORATIVA</th>
<th>VALORES FINALES</th>
<th>FUENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Independiente</td>
<td>Fracturas del segmento proximal de la tibia está formado por un cuadrado en el que la longitud del segmento es igual a la anchura mayor de la epífisis, conocido como cuadrado de Heinz.</td>
<td>Clasificación de Schatzker</td>
<td>Fractura de baja energía</td>
<td>Tipo I, Tipo II, Tipo III</td>
<td>Historia Clínica</td>
</tr>
<tr>
<td>Fracturas de meseta tibial</td>
<td>Clasificación de Schatzker</td>
<td>Fractura de alta energía</td>
<td>Tipo IV, Tipo V, Tipo VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable dependiente</td>
<td>Recuperación de la función del segmento corporal operado (rodilla) según los rangos de movilidad articular, fuerza muscular, grado de consolidación ósea y complicaciones presentadas</td>
<td>Reducción abierta y fijación interna</td>
<td>Escala KOSS</td>
<td>Excelente, bueno regular y malo</td>
<td>Historia Clínica</td>
</tr>
<tr>
<td>Resultados anatómico funcionales</td>
<td>Recuperación de la función del segmento corporal operado (rodilla) según los rangos de movilidad articular, fuerza muscular, grado de consolidación ósea y complicaciones presentadas</td>
<td>Consolidación ósea</td>
<td>En semanas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirugía mínima invasiva</td>
<td>Cirugía mínima invasiva</td>
<td>Balance articular-muscular</td>
<td>Flexión, extensión rodilla, Escala de Daniels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complicaciones</td>
<td>Complicaciones</td>
<td></td>
<td></td>
<td>Presencia - Ausencia</td>
<td></td>
</tr>
<tr>
<td>Variables intervinientes</td>
<td>Características más importante para el diagnóstico de la realidad de la población en estudio.</td>
<td>Sexo</td>
<td>Masculino - Femenino</td>
<td>Presencia - Ausencia</td>
<td>Historia Clínica</td>
</tr>
<tr>
<td></td>
<td>Grupos etarios</td>
<td>Grupos etarios</td>
<td>20-40 años</td>
<td>Presencia - Ausencia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mecanismo de traumatismo</td>
<td>Mecanismo de traumatismo</td>
<td>Directo - Indirecto</td>
<td>Presencia - Ausencia</td>
<td></td>
</tr>
<tr>
<td>Características demográficas y clínicas</td>
<td>Características más importante para el diagnóstico de la realidad de la población en estudio.</td>
<td>Etiología</td>
<td>Accidentes de tránsito, Caídas de altura, Arma de fuego, Caída del plano de sustentación</td>
<td>Presencia - Ausencia</td>
<td>Historia Clínica</td>
</tr>
<tr>
<td></td>
<td>Etiología</td>
<td>Grado de exposición</td>
<td>Fractura cerrada - Fractura expuesta</td>
<td>Presencia - Ausencia</td>
<td></td>
</tr>
</tbody>
</table>
CAPÍTULO IV

4. RESULTADOS

4.1 RESULTADOS

La presente investigación ha sido planteada con el objetivo de establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de las fracturas de meseta tibial en el Hospital Regional IESS Nº 2 Teodoro Maldonado Carbo durante el periodo 2015-2017, mediante la revisión estadística de las historias clínicas y la aplicación de escala de la Sociedad de rodilla (Knee Society Score).

Se realizó el análisis estadístico de los datos y se diseñaron tablas, gráficos para representar los resultados obtenidos. La historia clínica digital del AS-400, el programa estadístico SPPSS 21 y la escala de la Sociedad de rodilla (Knee Society Score) fueron los instrumentos validados para el análisis estadístico de los datos.

La evaluación funcional se realizó mediante la aplicación de la escala de la Sociedad de rodilla (Knee Society Score) siguiendo la interpretación de los puntajes obtenidos en base a:

- Malos: < 60 puntos.
- Regulares: 60-69 puntos.
- Buenos: 70-79 puntos.
- Excelentes: 80-100 puntos.
OBJETIVO 1. DESCRIBIR LAS CARACTERÍSTICAS DEMOGRÁFICAS Y CLÍNICAS DE LOS PACIENTES CON FRACTURAS DE MESETA TIBIAL EN CUANTO: ETIOLOGÍA, GRADO DE EXPOSICIÓN Y CLASIFICACIÓN.

Tabla 1. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según:
Grupos etarios.

<table>
<thead>
<tr>
<th>Variables demográficas</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupos etarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40 años</td>
<td>226</td>
<td>46,8</td>
</tr>
<tr>
<td>41-60 años</td>
<td>165</td>
<td>34,2</td>
</tr>
<tr>
<td>> 60 años</td>
<td>92</td>
<td>19,0</td>
</tr>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>378</td>
<td>78,3</td>
</tr>
<tr>
<td>Femenino</td>
<td>105</td>
<td>21,7</td>
</tr>
<tr>
<td>Total</td>
<td>483</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: Se analizó un total de 483 pacientes con fracturas de meseta tibial durante el periodo del 2015 al 2017, el sexo masculino predominó con el 78,3% (378) y el grupo etario de 20-40 años fue el más afectado (46,8%).
Tabla 2. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según:
Características clínicas.

<table>
<thead>
<tr>
<th>Variables clínicas</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiología</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidentes de tránsito</td>
<td>345</td>
<td>71,4</td>
</tr>
<tr>
<td>Caídas de altura</td>
<td>91</td>
<td>18,8</td>
</tr>
<tr>
<td>Caídas del plano de</td>
<td>27</td>
<td>5,6</td>
</tr>
<tr>
<td>sustentación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arma de fuego</td>
<td>20</td>
<td>4,1</td>
</tr>
<tr>
<td>Tipo de exposición</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractura cerrada</td>
<td>303</td>
<td>62,7</td>
</tr>
<tr>
<td>Fractura expuesta</td>
<td>180</td>
<td>37,3</td>
</tr>
<tr>
<td>Clasificación de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schatzker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo I</td>
<td>106</td>
<td>21,9</td>
</tr>
<tr>
<td>Tipo II</td>
<td>139</td>
<td>28,8</td>
</tr>
<tr>
<td>Tipo III</td>
<td>84</td>
<td>17,4</td>
</tr>
<tr>
<td>Tipo IV</td>
<td>81</td>
<td>16,8</td>
</tr>
<tr>
<td>Tipo V</td>
<td>32</td>
<td>6,6</td>
</tr>
<tr>
<td>Tipo VI</td>
<td>41</td>
<td>8,5</td>
</tr>
<tr>
<td>Total</td>
<td>483</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: Las fracturas de meseta tibial cerradas (62,7%), por accidentes de tránsito (71,4%) tipo I (21,9%) y II (28,8%) de Schatzker fueron el tipo más común de lesión encontrada en esta investigación.
OBJETIVO 2. ENUNCIAR EL TIPO DE TRATAMIENTO QUIRÚRGICO EMPLEADO EN LAS FRACTURAS DE MESETA TIBIAL.

<table>
<thead>
<tr>
<th>Tratamiento quirúrgico</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteosíntesis convencional</td>
<td>349</td>
<td>72,3</td>
</tr>
<tr>
<td>Osteosíntesis mínima invasiva</td>
<td>134</td>
<td>27,7</td>
</tr>
<tr>
<td>Total</td>
<td>483</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: El tratamiento quirúrgico de las fracturas de meseta tibial que se realiza con mayor frecuencia es la osteosíntesis convencional con reducción abierta y fijación interna (72,3%), que se considera el tratamiento de elección para la mayor parte de estas fracturas. Siendo la osteosíntesis mínima invasiva (MIPO) con el 27,7% una técnica que se emplea solo para casos seleccionados.
OBJETIVO 3. DETERMINAR LOS RESULTADOS FUNCIONALES MEDIANTE LA ESCALA DE LA SOCIEDAD DE RODILLA (KNEE SOCIETY SCORE), BALANCE ARTICULAR Y BALANCE MUSCULAR.

Tabla 4. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según:
Evaluación funcional Escala Knee Society Score.

<table>
<thead>
<tr>
<th>Resultados funcionales</th>
<th>Tipo de tratamiento quirúrgico definitivo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Osteosíntesis convencional</td>
<td>Osteosíntesis mínima invasiva</td>
</tr>
<tr>
<td>Resultados pre-</td>
<td>< 60 puntos</td>
<td>311</td>
</tr>
<tr>
<td>operatorios</td>
<td></td>
<td>89,1%</td>
</tr>
<tr>
<td>60-69 puntos</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>10,9%</td>
<td>17,2%</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Resultados post-</td>
<td>< 60 puntos</td>
<td>2</td>
</tr>
<tr>
<td>operatorios</td>
<td></td>
<td>.6%</td>
</tr>
<tr>
<td>60-69 puntos</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6,6%</td>
<td>13,4%</td>
</tr>
<tr>
<td>70-79 puntos</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>19,2%</td>
<td>11,9%</td>
</tr>
<tr>
<td>80-100 puntos</td>
<td>257</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>73,6%</td>
<td>73,1%</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: Se aplicó la escala Knee Society Score para realizar la evaluación funcional de la rodilla antes y después de la cirugía, cuya puntuación se interpreta en resultados Excelentes de 100 a 80 puntos, buenos de 70 a 79, regulares de 60 a 69 y malos por debajo de 60 puntos. Se evidencia que en la etapa preoperatoria los resultados funcionales fueron regulares y malos para ambas técnicas quirúrgicas.

A los 6 meses de post-operatorio, se aplicó la escala KSS, evidenciando que los resultados mejoraron considerablemente después de la intervención quirúrgica. Con la osteosíntesis convencional se reportaron resultados buenos y excelentes en el 19,2% y el 73,6% respectivamente, mientras que con la osteosíntesis mínima invasiva se reportaron resultados casi similares (11,9% y 73,1%). Lo cual permite concluir que ambas técnicas quirúrgicas son efectivas y proporcionan excelentes resultados funcionales.
Tabla 5. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Promedio de puntuación de Escala Knee Society Score.

<table>
<thead>
<tr>
<th>Tipo de tratamiento</th>
<th>Valor promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Osteosíntesis convencional (RAFI)</td>
</tr>
<tr>
<td>Puntuación KSS pre-operatorio</td>
<td>33,21</td>
</tr>
<tr>
<td>Puntuación KSS post-operatorio (6 meses)</td>
<td>83,88</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: El promedio global de la escala Knee Society Score en la etapa pre-quirúrgica fue de 33,21 y de 35,72 puntos tanto para la osteosíntesis convencional y para la osteosíntesis mínima invasiva, lo cual refleja resultados malos según la interpretación de la escala. En la etapa post-operatoria a los 6 meses, el promedio global con la escala fue significativamente alto con ambas técnica quirúrgicas, RAFI (83,88 puntos) y MIPO (91,84 puntos). Observado que con la técnica MIPO se alcanzan mayores resultados funcionales que con la osteosíntesis convencional.

<table>
<thead>
<tr>
<th>Movimiento</th>
<th>Promedio</th>
<th>Osteosíntesis convencional</th>
<th>Osteosíntesis mínima invasiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexión</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatoria</td>
<td>11,29</td>
<td>26,8</td>
<td></td>
</tr>
<tr>
<td>Post-operatoria*</td>
<td>117,07</td>
<td>130,9</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatoria</td>
<td>-28,95</td>
<td>-29,7</td>
<td></td>
</tr>
<tr>
<td>Post-operatoria*</td>
<td>-15,79</td>
<td>-5,1</td>
<td></td>
</tr>
</tbody>
</table>

* tiempo postoperatorio de 6 meses

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: Los resultados obtenidos demuestran que antes de la cirugía el promedio tanto de flexión y extensión de la rodilla está muy deteriorado: FLEXIÓN PREOPERATORIA de 11,29º y 26,8º con RAFI y MIPO; EXTENSIÓN PREOPERATORIA de -28,95º y -29,7º respectivamente). Después de la cirugía se recuperaron los rangos de movilidad articular casi a la normalidad, después de 6 meses posquirúrgicos, pero con resultados considerablemente superior con la osteosíntesis mínima invasiva: FLEXIÓN 130,9º vs 117,07º; EXTENSIÓN de -5,1 vs -15,79º.
Tabla 7. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Balance muscular global.

<table>
<thead>
<tr>
<th>Evaluación de fuerza muscular (Escala Daniels)</th>
<th>Tipo de tratamiento</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Osteosíntesis convencional</td>
<td>Osteosíntesis mínima invasiva</td>
</tr>
<tr>
<td>Fuerza muscular preoperatoria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado 1</td>
<td>289</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>82,8%</td>
<td>79,9%</td>
</tr>
<tr>
<td>Grado 2</td>
<td>60</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>17,2%</td>
<td>20,1%</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Fuerza muscular post-operatoria (6meses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado 3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2,6%</td>
<td>0,7%</td>
</tr>
<tr>
<td>Grado 4</td>
<td>230</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>65,9%</td>
<td>47,0%</td>
</tr>
<tr>
<td>Grado 5</td>
<td>110</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>31,5%</td>
<td>52,2%</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño.

Interpretación: Al evaluar la fuerza muscular en forma separada en los pacientes que fueron operados con RAFI y MIPO, se observó que del total de pacientes de la muestra (483), los pacientes con la técnica MIPO presentan mayor recuperación de la fuerza muscular (52,2% con grado 5) que los operados con RAFI (31,5% con grado 5).
Tabla 8. Distribución de 483 pacientes con fracturas de meseta tibial del Hospital Regional IESS Teodoro Maldonado Carbo de Guayaquil. 2015-2017, según: Análisis de asociación.

<table>
<thead>
<tr>
<th>Tipo de tratamiento quirúrgico</th>
<th>Resultados excelentes</th>
<th>Total</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Osteosíntesis convencional</td>
<td>257</td>
<td>92</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>72,39%</td>
<td>71,88%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98</td>
<td>36</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>27,61%</td>
<td>28,13%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>355</td>
<td>128</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
</tr>
<tr>
<td>Osteosíntesis mínima invasiva</td>
<td>98</td>
<td>36</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>27,61%</td>
<td>39,13%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>257</td>
<td>92</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>72,39%</td>
<td>71,88%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>355</td>
<td>128</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño

Interpretación: De 355 pacientes con resultados funcionales excelentes después del tratamiento quirúrgico el 72,39% (257) fue por osteosíntesis convencional y el 27,61% por osteosíntesis mínima invasiva. El análisis estadístico encontró asociación estadísticamente significativa entre los resultados excelentes con la osteosíntesis convencional (p=0,04). Lo cual demuestra que la técnica convencional ofrece mejores resultados funcionales que la técnica mínima invasiva.
OBJETIVO 4. ESTABLECER LA CORRELACIÓN ENTRE EL INICIO DE LA REHABILITACIÓN FÍSICA CON LOS RESULTADOS FUNCIONALES.

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>Media</th>
<th>N</th>
<th>Desviación típ.</th>
<th>t</th>
<th>gl</th>
<th>Sig. (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de inicio de la rehabilitación física</td>
<td>7,88</td>
<td>483</td>
<td>0,506</td>
<td>-39,91</td>
<td>29</td>
<td>0,0001</td>
</tr>
<tr>
<td>Puntuación de Escala KSS posoperatoria*</td>
<td>84,97</td>
<td>483</td>
<td>2,944</td>
<td>-43,87</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

* Promedio de puntuación a los 6 meses de la intervención quirúrgica

Fuente: Hospital Regional Teodoro Maldonado Carbo.
Autora: Soraya Alexandra Parra Patiño

Interpretación: El análisis de correlación de Pearson demostró asociación estadísticamente significativa (p=0,0001) entre el inicio de la rehabilitación física y los resultados de la evaluación funcional de la rodilla operada. El gráfico de dispersión evidencia que existe correlación positiva entre ambas variables, ya que mientras más temprano inicia la rehabilitación física la puntuación de la Escala Knee Society Score
4.2 DISCUSIÓN

La meseta tibial constituye una de las superficies de soporte de peso más importantes. Sus fracturas se enfrentan comúnmente a una entidad que abarca un amplio espectro de lesiones de morfología de fractura variable. Debido a la creciente incidencia de traumas de alta velocidad y mayores demandas funcionales de los pacientes, la cirugía está justificada en la mayoría de los casos. Si bien, hay avances en los métodos de fijación de fracturas, el tratamiento adecuado de las fracturas de la meseta tibial sigue siendo controvertido. El objetivo principal de esta investigación fue establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva de las fracturas de meseta tibial en el Hospital Regional IESS Nº 2 Teodoro Maldonado Carbo durante el periodo 2015-2017.

El presente estudio incluyó a 483 pacientes con fracturas de meseta tibial tratadas quirúrgicamente. El análisis de los resultados se realizó en función de la edad del paciente, la distribución por sexo, etiología, grado de exposición, modalidades de tratamiento, complicaciones post-operatorias y resultados funcionales. La mayoría de las fracturas se produjeron en pacientes entre los 20-40 años (46,8%). Estos resultados se correlaciona con otros estudios en la literatura que también muestran una mayor incidencia en el grupo de 20 a 40 años de edad, como los de Van Dreumel R (71%), Prat-Fabregat S (68%) y Manidakis et al con el 79% (6,17,21). Esto implica que estas lesiones afectan preponderantemente a grupos poblaciones jóvenes en edad productiva, lo cual puede afectar considerablemente el ámbito laboral, deportivo y de la vida diaria de estos pacientes.

En este estudio, la mayoría de los pacientes eran hombres, 378 de 483 (78,3%). Esto se puede atribuir a que los hombres participan más en actividades al aire libre y, por lo tanto, son más susceptibles a los accidentes laborales, de tránsito, deportivos y de la vida cotidiana. Kant R (25) informó similitud de resultados, donde reporta que la mayoría de los pacientes de su estudio pertenecían a grupos de adultos jóvenes (58,62%) y de sexo masculino (79,31%). Otro autor, Khatri et al reportó que el 99% (63) de sus pacientes corespondieron al sexo masculino. Estos resultados permiten concluir que el sexo masculino puede considerarse un factor de riesgo demográfico importatge para presentar fracturas de meseta tibial.
Al analizar los resultados funcionales postoperatorios de las fracturas de meseta tibial, se encontró en la literatura internacional, gran variedad de estudios que demuestran la efectividad del tratamiento quirúrgico, independientemente de la técnica empleada sobre la funcionalidad de la rodilla operada como: Manidakis et al (21), Kant et al (25) y Persiani P (26). Los resultados del presente estudio demostraron que tanto la osteosíntesis convencional (73,6%) como la osteosíntesis mínima invasiva (73,1%) proporciona resultados funcionales excelentes en el mayoría de los pacientes con fracturas de meseta tibial. Con una puntuación promedio de la Escala Knee Society Score a los 6 meses postoperatorio de 83,8 puntos con la técnica abierta vs 91,84 puntos con la técnica percutánea.

Cualquiera que sea el método quirúrgico empleado para el tratamiento de las fracturas de meseta tibial, los pacientes se van a beneficiar siempre de la cirugía, porque recuperan la función, movilidad articular y fuerza muscular en grados variables. Estudios precedentes demuestran esta conclusión, como los de van Dreumel R (6), que describe resultados Excelentes en el 81% de los casos, Giordano V (12), reporta excelentes resultados en el 91% de los casos que aplicaron la osteosíntesis convencional y Giannotti et al (14), informaron un resultados excelentes en más de la mitad de sus pacientes (57%).

La limitación más importante en el desarrollo de esta investigación fue la existencia de gran variedad de estudios que analizan los resultados postoperatorios de las fracturas de meseta tibial, pero no existe unanimidad en la aplicación de la escala de evaluación funcional, ya que se utilizaron diferentes tipos de escalas lo cual no permite hacer una correcta apreciación de los resultados finales, pero todos concluyen que el tratamiento quirúrgico siempre es beneficioso para los pacientes. También se encontró que existen datos incompletos en las historias clínicas de los pacientes, lo cual dificultó parcialmente el trabajo de campo. Además, se consideró también como un limitante el acceso oportuno a las historias clínicas, ya que existió demora en las autorizaciones por parte del departamento de Docencia del hospital para ejecutar el estudio, lo cual ocasionó retraso en la investigación.
CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES
La población más afectada con fracturas de meseta tibial durante el periodo del 2015 al 2017, fueron los adultos jóvenes de sexo masculino.

Las fracturas de meseta tibial cerradas ocasionadas por accidentes de tránsito, tipo I y II de la clasificación de Schatzker fueron el tipo más común de lesión encontrada en esta investigación.

La osteosíntesis convencional fue el tipo de tratamiento quirúrgico de mayor aplicación en las fracturas de meseta tibial y La osteosíntesis mínimamente invasiva (MIPO) presentó menos frecuencia de complicaciones post-operatorias en comparación con la osteosíntesis convencional.

Los resultados funcionales post-operatorios de las fracturas de meseta tibial fueron buenos y excelentes en la gran mayoría de los pacientes analizados mediante la escala de la Sociedad de rodilla (Knee Society Score), balance articular y muscular.

Existe correlación entre el inicio de la rehabilitación física con los resultados funcionales, ya que mientras más temprano inicia la rehabilitación física la puntación de la Escala Knee Society Score aumenta, que resultados funcionales satisfactorios.

Se concluye que las técnicas quirúrgicas de osteosíntesis convencional y osteosíntesis mínima invasiva son efectivas y proporcionan excelentes resultados funcionales.

RECOMENDACIONES
El tratamiento quirúrgico con osteosíntesis convencional mediante reducción abierta y fijación interna como el gold estándar para las fracturas de meseta tibial por ser el obtiene mejores resultados funcionales de la rodilla.

Emplear la osteosíntesis mínimamente invasiva (MIPO), en casos selecciones de fracturas de meseta tibial por ser una técnica que también ofrece resultados funcionales excelentes
BIBLIOGRAFÍA

Anexos

Anexo 1. Base de datos en Excel

<table>
<thead>
<tr>
<th>Nº</th>
<th>HC</th>
<th>NOMBRES Y APELLIDOS</th>
<th>CEDULA</th>
<th>EDAD</th>
<th>GRUPOS ETARIOS</th>
<th>SEXO</th>
<th>ETIOLOGIA</th>
<th>EXPOSICION</th>
<th>SCHAZTKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional IESS Nº 2 Teodoro Maldonado Carbo.

Autor: Soraya Alexandra Parra Patiño.
<table>
<thead>
<tr>
<th>N°</th>
<th>TIPO</th>
<th>FLEXION PRE</th>
<th>FLEXION POST</th>
<th>EXTENSION PRE</th>
<th>EXTENSION POST</th>
<th>FUERZA1</th>
<th>FUERZA2</th>
<th>KSS1 PRE</th>
<th>KSS2 POST</th>
<th>INICIO REHAB</th>
<th>KSS1 INTERPRET</th>
<th>KSS2 INTERPRET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Hospital Regional IESS Nº 2 Teodoro Maldonado Carbo.
Autor: Soraya Alexandra Parra Patiño.

PUNTUACION RODILLA

<table>
<thead>
<tr>
<th>DOLOR</th>
<th>PUNTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguno</td>
<td>50</td>
</tr>
<tr>
<td>Leve o ocasional</td>
<td>45</td>
</tr>
<tr>
<td>Solo escaleras</td>
<td>40</td>
</tr>
<tr>
<td>Macha y escaleras</td>
<td>30</td>
</tr>
<tr>
<td>Moderado ocasional</td>
<td>20</td>
</tr>
<tr>
<td>Continuo</td>
<td>10</td>
</tr>
<tr>
<td>Severo</td>
<td>0</td>
</tr>
</tbody>
</table>

AMPLITUDE DE MOVIMIENTO *(5° = 1 PUNTO)*

ESTABILIDAD (LAXITUD)

ANTEROPÓSTERIOR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 mm</td>
<td>10</td>
</tr>
<tr>
<td>5-10 mm</td>
<td>5</td>
</tr>
<tr>
<td>10 mm</td>
<td>0</td>
</tr>
</tbody>
</table>

MEDIOLATERAL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><5°</td>
<td>15</td>
</tr>
<tr>
<td>6° -9°</td>
<td>10</td>
</tr>
<tr>
<td>10° -14°</td>
<td>5</td>
</tr>
<tr>
<td>15°</td>
<td>0</td>
</tr>
</tbody>
</table>

Contractura e flexión (puntos negativos)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5° -10°</td>
<td>-2</td>
</tr>
<tr>
<td>10° -15°</td>
<td>-5</td>
</tr>
<tr>
<td>16° -20°</td>
<td>-10</td>
</tr>
<tr>
<td>>20°</td>
<td>-15</td>
</tr>
<tr>
<td>Déficit de extensión</td>
<td>Puntos</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td><10°</td>
<td>-5</td>
</tr>
<tr>
<td>10° -20°</td>
<td>-10</td>
</tr>
<tr>
<td>>20°</td>
<td>-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEFECTO DE ALINEAMIENTO FRONTAL MÁS DE 5° DE VARUS 0° DE VALGUS (3 por G°)</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>5° -10°</td>
<td>0</td>
</tr>
<tr>
<td>0° -4°</td>
<td>3 Puntos por grado</td>
</tr>
<tr>
<td>11° -15°</td>
<td>3 Puntos por grado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Función</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcha</td>
<td></td>
</tr>
<tr>
<td>Ilimitada</td>
<td>50</td>
</tr>
<tr>
<td>>10 lados de manzana</td>
<td>40</td>
</tr>
<tr>
<td>5 -10 lados de manzana</td>
<td>30</td>
</tr>
<tr>
<td><5 lados de manzana</td>
<td>20</td>
</tr>
<tr>
<td>Solo interior</td>
<td>10</td>
</tr>
<tr>
<td>Imposible</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Escaleras</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>50</td>
</tr>
<tr>
<td>Subida normal, descenso con Baranda</td>
<td>40</td>
</tr>
<tr>
<td>Subida y descenso con baranda</td>
<td>30</td>
</tr>
<tr>
<td>Subida con baranda, descenso imposible</td>
<td>15</td>
</tr>
<tr>
<td>Imposible</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deducciones</th>
<th>Puntos negativos</th>
<th>Puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastón</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bastones</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bastones, muletas, Deambulador</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 4. Autorización para la realización del estudio.
Urkund Analysis Result

Analysed Document: TESIS SORAYA PARA.docx (D43605412)
Submitted: 11/6/2018 7:11:00 PM
Submitted By: migue.mitev@ug.edu.ec
Significance: 3 %

Sources included in the report:
JAVIER PALOMEQUE.docx (D25373372)
TESIS PARA URKUND PEDRO HIDALGO.docx (D43297526)

Instances where selected sources appear:
TÍTULO Y SUBTÍTULO: Evaluación funcional y complicaciones en osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de fracturas de meseta tibial.

AUTOR: Soraya Alexandra Parra Patiño
TUTOR: Miguel Ángel Mite Vivar

INSTITUCIÓN: Universidad de Guayaquil
FACULTAD: Ciencias Médicas

CARRERA: Medicina

FECHA DE PUBLICACION: N° DE PÁGS:

AREAS TEMÁTICAS:

PALABRAS CLAVE: fractura de meseta tibial, evaluación funcional, complicaciones.

RESUMEN: Las fracturas de la meseta tibial ocurren debido a una combinación de carga axial y fuerzas aplicadas en varo / valgo que conducen a depresión articular, mala alineación y un mayor riesgo de osteoartritis postraumática, por tal motivo es importante realizar evaluaciones seriadas de los resultados postoperatorios a largo plazo. **Objetivo:** Establecer la evaluación funcional y las complicaciones de la osteosíntesis por reducción abierta y mínima invasiva en el tratamiento de las fracturas de meseta tibial en el hospital Regional IESS N° 2 Teodoro Maldonado Carbo durante el periodo 2015-2017. **Metodología:** Estudio de enfoque cuantitativo, observacional, analítico, retrospectivo y de corte transversal. Se analizó los pacientes con fracturas de meseta tibial durante el periodo del 1 de enero del 2015 hasta el 31 de diciembre del 2017 y fueron divididos en 2 grupos de estudio, grupo A de pacientes con cirugía abierta y grupo B de pacientes con cirugía mínima invasiva. Se empleó el software estadístico SPSS versión 21 para el análisis de los datos, utilizando estadística de tipo descriptiva e inferencial. **Resultados:** El tratamiento quirúrgico de las fracturas de meseta tibial que se realiza con mayor frecuencia es la osteosíntesis convencional con reducción abierta y fijación interna (72,3%). Con la osteosíntesis convencional se reportaron resultados buenos y excelentes en el 19,2% y el 73,6% respectivamente, mientras que con la osteosíntesis mínima invasiva se reportaron resultados casi similares (11,9% y 73,1%). Después de la cirugía se recuperaron los rangos de movilidad articular casi a la normalidad, después de 6 meses posquirúrgicos, pero con un resultado considerablemente superior con la osteosíntesis mínima invasiva: flexión 130,9º vs 117,07º; extensión de -5,1 vs -15,79º. Los pacientes con la técnica MIPO presentan mayor recuperación de la fuerza muscular (52,2% con grado 5) que los operados con RAFI (31,5% con grado 5). Se encontró asociación estadísticamente significativa entre los resultados excelentes con la osteosíntesis convencional (p=0,04). También se encontró asociación estadísticamente significativa (p=0,0001) entre el inicio de la rehabilitación física y los resultados de la evaluación funcional de la rodilla operada.

Nº DE REGISTRO (en base de datos):
Nº DE CLASIFICACION:

DIRECCIÓN URL (tesis en la web):

ADJUNTO PDF: SI X NO

CONTACTO AUTOR/ES:
Teléfono: 0987582853
E-mail: sory.pa@hotmail.com

CONTACTO EN LA INSTITUCIÓN:
Nombre: Universidad de Guayaquil- Facultad de Ciencias Médicas – Escuela de Graduados
Teléfono: 0422390311
E-mail: http://www.ug.edu.ec

Quito: Av. Whymer E7-37 y Alpallana, edificio Delfos, teléfonos (593-2) 2505660/1; y en la Av. 9 de octubre 624 y Carrión, edificio Promete, teléfonos 2569896/9. Fax: (593 2) 2509054