

FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS CARRERA DE INGENIERÍA CIVIL

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE

INGENIERO CIVIL VÍAS

ANÁLISIS TÉCNICO-ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA, PROVINCIA DEL ORO

AUTORES: KEVIN JAIR CHAVEZ ZAPATA

ALEX STALIN PALLO CUZCO

TUTOR: ING. FRANCISCO JAVIER CORDOVA RIZO M.Sc.

GUAYAQUIL, SEPTIEMBRE 2021

Agradecimiento

A Dios y a mamita Virgen María.

Por brindarme salud, sabiduría y paciencia, por permitirme haber llegado a esta majestuosa etapa de mi carrera y poder culminar está meta propuesta.

A mis padres ROSA y JUAN.

Por nunca perder la fe en mí, por estar pendientes, por haber confiado todo este tiempo y tener la certeza de que este día llegaría. ¡Gracias! Mamá (ROSA ZAPATA ERAS) y Papá (JUAN CHAVEZ NIEVES), por ser mis pilares fundamentales durante en este proceso de convertirme en un profesional, por lo buenos valores que me han inculcado, por su infinito amor, por sus consejo de vida, por estar presente en cada etapa importante de mi vida, a pesar de las adversidades e inconvenientes que se presentaron. Gracias por estar en ocasiones especiales, aunque sea de forma virtual, siempre estuvieron ahí, brindándome ánimos para no darme por vencido y convertirme en persona de bien al igual que ustedes.

Me faltan palabras para poder expresar cuan agradecido estoy, por todo el sacrifico que han hecho durante toda mi vida, desde mis primeros pasos hasta ahora en la culminación de carrera universitaria. *MUCHAS GRACIAS POR SER MIS PADRES.*

A mis hermanos.

Por confiar en mí, por darme fuerzas, por la moral y el apoyo que siempre me brindaron, por aconsejarme siempre y por haberme dado 6 hermosos sobrinos a los cuales los quiero de una manera incondicional. **GRACIAS, HERMANOS.**

A mis familiares.

Por el apoyo incondicional, por los ánimos y por los consejos que me brindaban durante mi formación académica.

A mis amigos.

A mis grandes amigos que forme en la majestuosa FACULTAD DE CIENCIAS MATEMATICAS Y FISICAS, gracias por la paciencia y por brindarme sus conocimientos que necesite en su debido momento, gracias por los buenos momentos que compartimos dentro y fuera de las aulas, por sus consejos y sus ánimos, gracias por convertirse en mis amigos de vida, gracias por convertirse en mi familia universitaria (ANDRES, EDWIN, JOFFRE, ALEX)

A nuestros docentes.

A nuestros queridos docentes de la FACULTAD DE CIENCIAS MATEMATICAS Y FISICAS, por darnos la orientación, por sus conocimientos académicos y experiencia laboral, por siempre estar dispuestos a enseñarnos dentro y fuera de sus horarios establecido. Y a nuestros tutor al Ing. Francisco Córdova, por ser un excelente docente y ser humano, por guiarnos y aconsejarnos siempre por el camino del bien y a nunca darnos por vencidos.

KEVIN CHAVEZ ZAPATA

Agradecimiento

A DIOS.

Por brindarme salud, sabiduría y perseverancia en el transcurso de la vida universitaria, por permitirme haber llegado a culminar la majestuosa carrera de Ingeniería Civil.

A mis padres RODRIGO y CARMEN.

Por apoyarme, aconsejarme y ser mis pilares fundamentales para no desistir y luchar durante la etapa universitaria hasta lograr convertirme en un profesional, por ser mis ejemplos a seguir de que la lucha constante y perseverancia me llevaran a alcanzar metas propuestas.

A mis abuelos.

Por estar pendientes de mí, brindando consejos e inculcando valores como el respeto para ser una persona culta y decente.

A mis hermanas ANAHIS Y SISHA.

Por ser mi impulso e inspiración, para ser mejor persona día a día.

A mis Familiares.

Por el apoyo incondicional, por los consejos y ánimos que me brindaban a lo largo de mi formación académica.

A nuestros Docentes.

A nuestros docentes de la Universidad de Guayaquil, carrera de ingeniería civil por impartirnos conocimientos académicos y experiencias del ámbito laboral, en especial a nuestro tutor el ING. Francisco Córdova, por guiarnos en el desarrollo de nuestra tesis, por ser un excelente docente y ser humano.

A mis amigos

A mis amigos que forme en la Carrera de Ingeniería Civil, FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICA, por ser mi familia universitaria, gracias por los momentos, conocimientos y consejos compartidos. (ANDRES, EDWIN, JOFFRE, KEVIN).

ALEX PALLO CUZCO

Dedicatorias

La presente tesis va dedicado a DIOS, a mamita virgen MARIA, a mis Padres JUAN EUGENIOO CHAVEZ NIEVES Y ROSA DIOMEDES ZAPATA ERAS, por ser mi pilar fundamental durante toda mi vida, por nunca perder la fe en mí, por apoyarme siempre en cada problema que se ha presentado, por brindarme ánimos por seguir adelante y hacerme saber siempre el gran potencial que tengo; a mis hermanos ALEX CHAVEZ ZAPATA y ARNALDO CHAVEZ ZAPATA por apoyarme física y emocionalmente para salir adelante, y por ultimo a mis familiares por brindarme sus sabios consejos y cariño.

KEVIN CHAVEZ ZAPATA

Dedicatorias

La presente tesis se la dedico con todo mi amor a mis padres, CARMEN Y RODRIGO, porque han sido mi inspiración para poder titularme como profesional de la carrera de Ingeniería Civil. Dedico cada lagrima, cada esfuerzo a todos mis familiares que estuvieron presente de una u otra manera brindándome aliento y ánimos a lo largo de mi vida universitaria.

ALEX PALLO CUZCO

Declaración Expresa

Artículo XI.- del Reglamento Interno de Graduación de la Facultad de Ciencias Matemáticas y Físicas de la Universidad de Guayaquil.

La responsabilidad de los hechos, ideas y doctrinas expuestas en este trabajo de titulación corresponden exclusivamente al autor y al Patrimonio Intelectual de la Universidad de Guayaquil.

Chavez Zapata Kevin Jair

C.I. No. 0706772241

Pallo Cuzco Alex Stalin

2 les Allo

C.I. No. 1206773317

TRIBUNAL DE GRADUACIÓN

ING. JORGE ARROYO OROZCO, MSc. PRESIDENTE DEL TRIBUNAL

ING. DAVID STAY COELLO, MSc. VOCAL

ING. GUILLERMO PACHECO QUINTANA, MSc. VOCAL

NOMBRE: CHAVEZ ZAPATA KEVIN JAIR PALLO CUZCO ALEX STALIN

ANEXO VI. - CERTIFICADO DEL DOCENTE- TUTOR DEL TRABAJO DE TITULACIÓN

FACULTAD: <u>CIENCIAS MATEMÁTICAS Y FÍSICAS</u> CARRERA: <u>INGENIERÍA CIVIL</u>

Guayaquil, 02 de septiembre del 2021

Ingeniero

Julio Cesar Castro Rosado, MS.c.

VICEDECANO FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS UNIVERSIDAD DE GUAYAQUIL

Ciudad. -

De mis consideraciones:

Envío a Ud. el Informe correspondiente a la tutoría realizada al Trabajo de Titulación "ANÁLISIS TÉCNICO ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA PROVINCIA DEL ORO" de los estudiantes, Sr. CHAVEZ ZAPATA KEVIN JAIR y Sr. PALLO CUZCO ALEX STALIN, indicando que han cumplido con todos los parámetros establecidos en la normativa vigente:

- El trabajo es el resultado de una investigación.
- El estudiante demuestra conocimiento profesional integral.
- El trabajo presenta una propuesta en el área de conocimiento.
- El nivel de argumentación es coherente con el campo de conocimiento.

Adicionalmente, se adjunta el certificado de porcentaje de similitud y la valoración del trabajo de titulación con la respectiva calificación.

Dando por concluida esta tutoría de trabajo de titulación, **CERTIFICO**, para los fines pertinentes, que los estudiantes están aptos para continuar con el proceso de revisión final.

Atentamente,

ING. FRANCISCO JAVIER CÓRDOVA RIZO

C.C.: 1200917605 FECHA: 02/09/2021


ANEXO VII.- CERTIFICADO PORCENTAJE DE SIMILITUD

FACULTAD: CIENCIAS MATEMÁTICAS Y FÍSICAS

CARRERA: INGENIERÍA CIVIL

Habiendo sido nombrado ING. FRANCISCO JAVIER CORDOVA RIZO, tutor del trabajo de titulación certifico que el presente trabajo de titulación ha sido elaborado por CHAVEZ ZAPATA KEVIN JAIR C.I.: 0706772241 y PALLO CUZCO ALEX STALIN C.I.: 0950548974, con mi respectiva supervisión como requerimiento parcial para la obtención del título de: INGENIERO CIVIL.

Se informa que el trabajo de titulación: <u>"ANÁLISIS TÉCNICO ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA PROVINCIA DEL ORO"</u>, ha sido orientado durante todo el periodo de ejecución en el programa antiplagio URKUND quedando el 4% de coincidencia.

Urkund Analysis Result

Analysed Document: URKUND CHAVEZ_KEVIN &

PALLO_ALEX_TRABAJO_TITULACION_VIAS_SEPTIEMBRE_2021.docx

(D111562353)

Submitted: 8/22/2021 7:01:00 PM

Submitted By: francisco.cordovar@ug.edu.ec

Significance: 4 %

Firmado electrónicamente por:
FRANCISCO
JAVIER
CORDOVA
RIZO

ING. FRANCISCO JAVIER CÓRDOVA

RIZOC.C.: 1200917605 FECHA: 02/09/2021

ANEXO VIII.- INFORME DEL DOCENTE REVISOR FACULTAD: CIENCIAS MATEMÁTICAS Y FÍSICAS **CARRERA: INGENIERÍA CIVIL**

Guayaquil, 22 de septiembre de 2021

Ingeniero

Javier Córdova Rizo, MSc.

DIRECTOR DE LA CARRERA DE INGENIERIA CIVILFACULTAD CIENCIAS MATEMATICAS Y FISICAS UNIVERSIDAD DE GUAYAQUIL

Ciudad. -

De mis consideraciones:

Envío a Ud. El Informe correspondiente a la REVISIÓN FINAL del Trabajo de Titulación "ANÁLISIS TÉCNICO-ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA, PROVINCIA DEL ORO" de los estudiantes: CHAVEZ ZAPATA KEVIN JAIR y PALLO CUZCO ALEX STALIN. Las gestiones realizadas me permiten indicar que el trabajo fue revisado considerando todos los parámetros establecidos en las normativas vigentes, en el cumplimento de los siguientes aspectos:

Cumplimiento de requisitos de forma:

El título tiene un máximo de 22 palabras.

La memoria escrita se ajusta a la estructura establecida.

El documento se ajusta a las normas de escritura científica seleccionadas por la Facultad. La investigación es pertinente con la línea y sublíneas de investigación de la carrera.

Los soportes teóricos son de máximo 10 años.

La propuesta presentada es pertinente.

Cumplimiento con el Reglamento de Régimen Académico:

El trabajo es el resultado de una investigación.

El estudiante demuestra conocimiento profesional integral.

El trabajo presenta una propuesta en el área de conocimiento.

El nivel de argumentación es coherente con el campo de conocimiento.

Adicionalmente, se indica que fue revisado, el certificado de porcentaje de similitud, la valoración del tutor, así como de las páginas preliminares solicitadas, lo cual indica el que el trabajo de investigación cumple con los requisitos exigidos.

Una vez concluida esta revisión, considero que los estudiantes: CHAVEZ ZAPATA KEVIN JAIR y PALLO CUZCO ALEX STALIN están aptos para continuar el proceso de titulación. Particular que comunicamos a usted para los fines pertinentes.

Atentamente,

DAVID OMAR STAY COELLO

ING. STAY COELLO DAVID OMAR. Msc.C.C.

0907795108

FECHA: 22 de septiembre de 2021

DECLARACIÓN DE AUTORÍA Y DE AUTORIZACIÓN DE LICENCIA GRATUITA INTRANSFERIBLE NO EXCLUSIVA PARA EL USO NO COMERCIAL DE LA OBRA CON FINES NO ACADÉMICOS

FACULTAD: <u>CIENCIAS MATEMÁTICAS Y FÍSICAS</u> CARRERA: <u>INGENIRÍA CIVIL</u>

LICENCIA GRATUITA INTRANSFERIBLE Y NO COMERCIAL DE LA OBRA CON FINES NO ACADÉMICOS

Nosotros, Chavez Zapata Kevin Jair, con C.I. No. 0706772241, y Pallo Cuzco Alex Stalin, con C.I. No. 1206773317, certificamos que los contenidos desarrollados en este trabajo de titulación, cuyo título es: "ANÁLISIS TÉCNICO ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA - PUERTO IELÍ DEL CANTÓN SANTA ROSA PROVINCIA DEL ORO"

son de nuestra absoluta propiedad y responsabilidad, en conformidad al Artículo 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN*, autorizamos la utilización de una licencia gratuita intransferible, para el uso no comercial de la presente obra a favor de la Universidad de Guayaquil.

Chavez Zapata Kevin Jair

C.I. No. 0706772241

Pallo Cuzco Alex Stalin

2 los Allo

C.I. No. 1206773317

ÍNDICE GENERAL CAPÍTULO I

Generalidades

1.1 Ir	ntroducción1
1.2 P	Planteamiento del Problema2
1.3 J	ustificación2
1.4 C	Objetivos3
1.4.1	Objetivo General3
1.4.2	2 Objetivos Específicos3
1.5 D	Pelimitación del Problema4
1.6 U	Jbicación4
	CAPÍTULO II
	Marco Teórico
2.1 A	ntecedentes6
2.2 B	Bases Teórico - Científicas7
2.2.1	Proyectos Viales7
2.2.2	Proyectos Viales8
2.2.3	Carreteras9
2.2.4	Clasificación de las Carreteras10
2.2.5	Criterios que Definen la Función de una Vía14

2.2.6	Tráfico	.14
2.2.7	Volúmenes de Tráfico	.14
2.2.8	Composición del Tráfico.	.16
2.2.9	Aforo de Tráfico	.20
2.2.10	Clasificación de Conteo Vehicular	.20
2.2.11	Método de Conteo	.20
2.2.12	Proyección del Tráfico	.21
2.2.13	Nivel de Servicio	.22
2.2.14	Ejes Equivalentes (ESAL'S).	.23
2.2.15	Factor de Equivalencia de Carga	.24
2.2.16	Suelos	.24
2.2.17	Estudios de Suelos	.25
2.2.18	Materiales	.28
2.2.19	Drenaje	.31
2.2.20	Pavimentos	.34
2.2.21	Clasificación del Pavimento	.34
2.2.22	Criterios que Describen los Pavimentos Flexibles	.35
2.2.23	Diseño Geométrico	.36
2.2.24	Elementos que Definen el Diseño Geométrico	.36

2.3	Definición de Términos Básicos41		
		CAPÍTULO II	I
		Marco Metodoló	gico
3.1	Tipo de l	Estudio	43
3.2	Població	n, Muestra y Muestreo	44
3.3	Métodos	, Técnicas e Instrumento	s44
3.4	Plan de l	Procesamiento y Análisis	s44
		CAPÍTULO I\	/
		Desarrollo del T	ema
4.1	Visita de	Campo	47
4.2	Estudio	de Tráfico	47
4.3	Análisis	de Tráfico Vehicular	48
4	.3.1 Tipos	de Vehículos	48
4	.3.2 Cont	eo de Tráfico	49
4	.3.3 Tráfic	o Promedio Diario Sema	nal (TPDS)50
4	.3.4 Tráfic	o Promedio Diario Anua	I (T.P.D.A)52
4	.3.5 Nivel	de Servicio Actual	59
4	.3.6 Nivel	de Servicio Futuro	64
4.4	Análisis	del Suelo	67

4.5	Di	seño de Pavimento Flexible68
4.6	Me	etodología AASTHO 93 para Pavimentos Flexibles70
4.7	Va	ariables del Método de Diseño de Pavimentos Flexibles70
4	.7.1	Confiabilidad (R)70
4	.7.2	Desviación Estándar (Zr)7
4	.7.3	Desviación Estándar Global o Típica (So)7
4	.7.4	Niveles de Serviciabilidad72
4	.7.5	Modulo Resiliente73
4	.7.6	Gráficos de los Coeficiente de Capas (a)74
4.8	Co	peficiente de Drenaje (m)78
4.9	Νί	úmeros Estructurales78
4	.9.1	Espesores de Capas de la Estructura del Pavimento80
4.10	Cá	álculo de los ESAL'S8′
4	.10.1	Determinación de los Ejes Equivalentes85
4.11	De	eterminación del CBR de Diseño89
4.12	Mo	ódulos Resilientes (Mr) y Coeficientes de Capa (a)89
4.13	Νú	úmeros Estructurales94
4.14	De	eterminación del Coeficiente de Drenaje (m)97
4.15	De	eterminación de los Espesores del Pavimento Flexible97

4.16	Diseño Geométrico Propuesto por Autores99
4.1	16.1 Drenaje108
4.17	Presupuesto110
4.1	17.1 Rubros y Costos Propuestos por la Consultora110
4.18	Análisis del Presupuesto Considerando la Ley de Pareto .111
4.19	Tablas Comparativas sobre Consultora y Autores114
	CAPÍTULO V
	Conclusiones y Recomendaciones
5.1	Conclusiones118
5.2	Recomendaciones120
Biblio	grafía
Anexo	os

Índice de Ilustraciones

Ilustración 1: Ubicación del proyecto5
Ilustración 2:Clasificación de la vía según su Relieve Transversal13
Ilustración 3: Clasificación de la vía según su Relieve Longitudinal13
Ilustración 4: Vehículos Motorizados con sus Dimensiones y Pesos18
Ilustración 5: Vehículos Motorizados, Posibles Combinaciones19
Ilustración 6: Composición del Pavimento35
Ilustración 7: Transición de Peralte39
Ilustración 8: Elementos de la Sección Transversal41
Ilustración 9: Tipos de Vehículos Considerados Conteo Manual48
Ilustración 10: Análisis Estadístico de Aforo Vehicular por Día50
Ilustración 11: Porcentaje de Composición Vehicular50
Ilustración 12: Nivel de Servicio Actual de la vía en Estudio64
Ilustración 13: Nivel de Servicio Futuro de la vía en Estudio67
Ilustración 14: Coeficiente Estructural del Concreto Asfaltico (a1)75
Ilustración 15: Coeficiente de Base Granular (a2)76
Ilustración 16: Coeficiente de subbase granular y Mejoramiento (a3). 77
Ilustración 17: Nomograma y Cálculo del Número Estructural79
Ilustración 18: Nomograma de Obtención del Número Estructural79
Ilustración 19: Distribución de los Espesores80
Ilustración 20: Distribución de los Espesores del Pavimento81
Ilustración 21: Criterios para Determinar el CBR de Diseño89

Ilustración 22: Coeficiente Estructural (Estabilidad de Marshall) (a1)90
Ilustración 23: Módulo Resiliente Base Granular CBR 80%91
Ilustración 24: Módulo Resiliente Subbase con un CBR de 30%92
Ilustración 25: Módulo Resiliente Mejoramiento con un CBR de 20%. 93
Ilustración 26: Números Estructurales de Base Granular95
Ilustración 27: Números Estructurales de Subbase Granular95
Ilustración 28: Números Estructurales del Mejoramiento96
Ilustración 29: Números Estructurales de la Subrasante96
Ilustración 30: Valores de Diseño Recomendados para Carreteras107
Ilustración 31: Área Hidráulica de Aportación

Índice de Tablas

Tabla 1: Coordenadas Geográficas UTM	5
Tabla 2: Clasificación en Función del Tráfico Proyectado	11
Tabla 3: Niveles de Servicio.	23
Tabla 4: Categorías de Subrasante	26
Tabla 5: Especificaciones de Mejoramiento de la Subrasante	29
Tabla 6: Coeficientes de Escorrentía.	32
Tabla 7: Periodos de Retorno para Diseño.	33
Tabla 8: Conteo Vehicular Realizado Durante 4 Días	49
Tabla 9: Porcentaje de Composición Vehicular por TPDS	52
Tabla 10: Coeficientes de Confiabilidad (K).	54
Tabla 11: Cálculo del TPDA Actual por Composición Vehicular	55
Tabla 12: TPDA Asignado en Vehículos Livianos Equivalentes	56
Tabla 13 Tasa de Crecimiento	57
Tabla 14: Resumen del Tráfico Futuro, Proyectado a 20 Años	58
Tabla 15: Clasificación Funcional de una vía	59
Tabla 16: Volumen de Máxima Demanda Vehicular Horaria	60
Tabla 17: Factores de Distribución Direccional (Fd) y de Carril (Fc).	69
Tabla 18: Confiabilidad según el Tipo de vía	71
Tabla 19: Relación de Confiabilidad y el Valor Zr	71
Tabla 20: Valor So De Acuerdo a las Condiciones Del Pavimento	72

Tabla 21: Determinación del Módulo Resiliente	73
Tabla 22: Coeficientes de Drenaje para Pavimentos Flexibles	78
Tabla 23: Espesores Mínimos según los Ejes Equivalentes	81
Tabla 24: Factor de Carga Ejes Simples Pt 2.5.	82
Tabla 25: Factor de Carga Ejes Tándem Pt 2.5.	83
Tabla 26: Factor de Carga Ejes Trídem Pt 2.5	84
Tabla 27: Configuración de los Pesos de los Vehículos en Ton	85
Tabla 28: Transformación de los Pesos de Toneladas a Kips	85
Tabla 29: Resumen del Factor de Equivalencia	86
Tabla 30: Tasa de Crecimiento Vehicular de la Provincia De El Oro.	87
Tabla 31: Factor de Crecimiento Vehícular Proyectado a 20 Años	87
Tabla 32: Calculo de ESAL'S.	88
Tabla 33: Módulos Resilientes (Mr) y Coeficientes de Capas (a)	94
Tabla 34: Resumen de los Espesores del Pavimento Flexible	98
Tabla 35: Velocidad de Diseño	.100
Tabla 36: Velocidad de Operación.	101
Tabla 37: Tasa de Sobreelevación o Peralte.	.103
Tabla 38: Radios Mínimos Recomendados por la MTOP 2003	.104
Tabla 39: Diseño de Sección Transversal	.105
Tabla 40: Resumen del Diseño Geométrico de la vía de estudio	106
Tabla 41: Área Hidráulica de Necesaria	.109
Tabla 42: Resumen de Rubros y Costos por la Consultora	110

Tabla 43: Resumen del 20% de Rubros con Costos (Consultora)112
Tabla 44: Resumen del 20% de Rubros con Costos (Autores)113

RESUMEN DEL TRABAJO DE TITULACIÓN (ESPAÑOL) FACULTAD: CIENCIAS MATEMÁTICAS Y FÍSICAS CARRERA: INGENIERÍA CIVIL

Título Del Trabajo De ANÁLISIS TÉCNICO-ECONÓMICO DE LA AMPLIACIÓN A 2 Titulación: CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA, PROVINCIA DEL ORO

Autores: Chavez Zapata Kevin Jair

Pallo Cuzco Alex Stalin

Tutor: Ing. Córdova Rizo Francisco Javier, M.Sc

RESUMEN

El presente trabajo de titulación tiene como objetivo realizar una análisis de los datos obtenidos sobre la ampliación de la vía Santa Rosa – Puerto Jelí, teniendo en cuenta que se realizó un estudio de tráfico de 4 días, con dos días normales y dos días especiales, estos datos tomados en campo fueron de utilidad para determinar el TPDA con un periodo de proyección de 20 años ayudando a clasificar el tipo de vía. Así mismo, estos parámetros permitieron la determinación y diseño del pavimento flexible. Posteriormente, se realizaron la toma de 2 calicatas en lugares al azar de la vía, aplicando los ensayos permitentes como: granulometría, límites de atterberg, proctor y CBR, el cual servirá para conocer las propiedades físicas de los materiales, teniendo en cuenta que si no son los adecuados se debe recomendar un material apropiado para soportar las cargas de los vehículos sobre la infraestructura vial.

PALABRAS CLAVES: DISEÑO, CALICATAS, LIMITES DE ATTERBERG, PROCTOR, CBR.

RESUMEN DEL TRABAJO DE TITULACIÓN (INGLES) FACULTAD: CIENCIAS MATEMÁTICAS Y FÍSICAS CARRERA: INGENIERÍA CIVIL

Title Of The Degree

Project:

TECHNICAL – ECONOMIC ANALYSIS FROM SANTA ROSA – PUERTO JELÍ DEVELOPMENT FROM 2 LANES, SANTA ROSA COUNTY, EL ORO PROVINCE

Authors: Kevin Jair Chavez Zapata

Alex Stalin Pallo Cuzco

Advisor: Ing. Córdova Rizo Francisco Javier, M.Sc

ABSTRACT

The objective of this degree work is to carry out an analysis of the data obtained on the expansion of the Santa Rosa - Puerto Jelí road, taking into account that a 4-day traffic study was carried out, with two normal days and two special days, These data taken in the field were useful to determine the ADT with a projection period of 20 years, helping to classify the type of road. Likewise, these parameters allowed the determination and design of the flexible pavement. Subsequently, 2 pits were taken in random places on the road, applying the permitting tests such as: granulometry, atterberg limits, proctor and CBR, which will serve to know the physical properties of the materials, taking into account that if they are not adequate, an appropriate material should be recommended to support the loads of vehicles on the road infrastructure.

KEY WORDS: DESIGN, BUDGETING, ATTERBERG LIMITS, PROCTOR, CBR.

CAPÍTULO I

Generalidades

1.1 Introducción

Las vías de comunicación, son rutas y caminos que se utilizan para uso público y privado, en el cual su infraestructura estará proyectada y construida para la circulación de los vehículos, sean livianos, buses y pesados, con la finalidad de movilizarse de un sitio a otro de manera continua en el espacio y el tiempo con los niveles adecuados de seguridad y comodidad.

En el Ecuador, existe la Red Vial Estatal en el que comprende un conjunto de carreteras, en las que están integradas las vías primarias y secundarias, también existe la Red Vial Provincial, que está constituida por las vías terciarias y por último la Red Vial Cantonal, el cual son los caminos vecinales que existen en cada ciudad o parroquia.

La provincia de El Oro, actualmente posee 140 tramos de vías, que comunica ciudades con parroquias, dichos tramos se localizan en una zona de alta producción económica, de los cuales aún existen vías que se encuentran en un estado deplorable, por lo que la red vial provincial de El Oro ha destinado más recursos económicos para mejoramientos, rehabilitaciones, ampliaciones y construcciones de carreteras, fomentando a un mejor desarrollo económico para la provincia.

En la ciudad de Santa Rosa, provincia de El Oro, posee caminos vecinales que en su mayoría se encuentran asfaltadas, pero hay otros tramos en mal estado con una capa de rodadura de lastre o tierra dificultando la circulación vehicular hacia las parroquias, entre las que se encuentran Santa Rosa - Puerto Jelí con una longitud de aproximadamente 3.5 km conectada a la vía estatal E-25.

En la actualidad la vía Santa Rosa - Puerto Jelí, está siendo intervenida para mejorar su nivel de servicio, por lo cual se considera importante revisar los diseños que se pretende implementar considerando a Puerto Jelí ser zona de destino turístico. Este trabajo propuesto analizará la sección transversal, pavimento y drenaje considerado para esta vía.

1.2 Planteamiento del Problema

Un adecuado nivel de servicio para una vía, le permite contar con una adecuada infraestructura, lo cual incluye el dimensionamiento geométrico, pavimento, drenaje, etc. Sobre todo, si es una carretera muy transitada, el hecho de existir inadecuada implementación de los factores anteriormente mencionados hace que este espacio de circulación vehicular no sea cómodo y seguro.

La vía Santa Rosa - Puerto Jelí, posee una carretera con un ancho de calzada de 5.60 m, el trabajo actualmente implementado por el GAD Provincial de El Oro pretende mejorar sustancialmente esta oferta vial. Otro inconveniente para destacar, es el evidenciado deterioro de la estructura del pavimento a consecuencia del intenso tráfico, clima, y condiciones en que se desarrolla esta vía. Teniendo en cuenta lo antes mencionado surge la siguiente pregunta:

La implementación del diseño geométrico, pavimento, drenaje, de la vía Santa Rosa-Puerto Jelí, que se encuentra ubicada en el cantón Santa Rosa provincia de El Oro, ¿mejorará el nivel de servicio?

1.3 Justificación

Una vía, se debe planificar de manera precisa con todo lo que abarca un análisis técnico, agrupando de forma ordenada los aspectos importantes que se debe realizar,

como son: los factores geográficos y físicos que existen en el terreno al momento de su construcción.

Las especificaciones técnicas se las obtiene mediante el desarrollo de los estudios que se toma en campo, estos estudios abarcan un factor importante para el diseño de la vía, de manera que deben realizarse de forma responsable garantizando que los datos de los estudios no sean alterados.

De ser así, la vía podrá prestar un buen servicio con los niveles adecuados de confort y seguridad, asegurando que la infraestructura vial cumple con los requisitos necesarios para el buen funcionamiento.

Por lo tanto, este proyecto de investigación tiene como finalidad garantizar un buen análisis técnico-económico de la vía en desarrollo, realizando observaciones entre los estudios realizados con anterioridad y los estudios hechos por los autores de este proyecto investigativo. Con el fin de evitar que la vía falle causando problemas entre los transportistas y pobladores del sector cuando se encuentre en total funcionamiento.

1.4 Objetivos

1.4.1 Objetivo General.

Analizar el estudio de la vía Santa Rosa - Puerto Jelí de la provincia de El Oro, acorde a las normas y especificaciones técnicas del MTOP, incluyendo el diseño del pavimento flexible, según guía AASHTO 93, geometría y drenaje que garanticen el buen funcionamiento de la ampliación de la vía.

1.4.2 Objetivos Específicos.

Elaborar un estudio inicial de tráfico.

- Caracterizar el suelo de la subrasante mediante muestras de suelos (calicatas)
 obtenidas in situ.
- Evaluar el diseño geométrico y sección transversal acorde a la clasificación de la vía, para lo cual se toma en consideración las normativas vigentes establecidas por el MTOP.
- Evaluar el sistema de drenaje vial.
- Analizar los rubros del presupuesto considerando la ley de Pareto

1.5 Delimitación del Problema

Para la realización de este trabajo de titulación, se contará con información de datos recopilados en el campo y con estudios preliminares que se realizaron antes que inicie este proyecto, a fin de revisar y analizar los aspectos técnico-económico de la ampliación a 2 calzadas de vía Santa Rosa – Puerto Jelí, el cual servirá para verificar si los parámetros que se escogieron en los estudios anteriores son los más adecuados.

Para este efecto, haremos el estudio de tráfico y tomas aleatoria de muestras de suelo que permitirá realizar comparaciones en las estructuras de pavimento y diseño geométrico de la vía obtenidos inicialmente.

1.6 Ubicación

El presente trabajo de titulación, se encuentra ubicado en el cantón Santa Rosa de la provincia De El Oro, que está en comunicación con la parroquia de Puerto Jelí. Utilizando la aplicación de GOOGLE EARTH obtuvimos las coordenadas en el sistema UTM (Universal Transversal Mercador) teniendo como resultado los siguientes datos:

Tabla 1: Coordenadas Geográficas UTM.

PUNTOS		NORTE	ESTE
INICIO:	Redondel Jorge Kaiser E-25 St. Rosa	9620191.594	614209.834
FIN:	Regeneración Puerto Jelí	9622166.611	611765.069

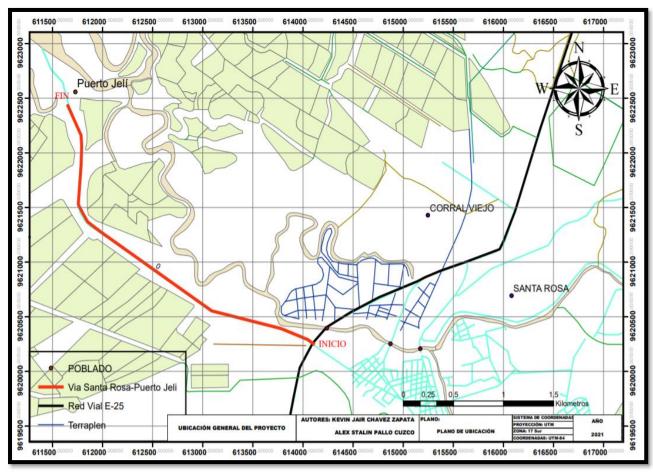


Ilustración 1: Ubicación del proyecto. Elaborado por: Kevin Chávez – Alex Pallo

CAPÍTULO II

Marco Teórico

2.1 Antecedentes

Las vías nos permiten desplazarnos de un sitio a otro de forma rápida y segura. Existente desde el inicio de la humanidad hasta la actualidad que con el transcurso de los años se han ido transformando y modificando de acuerdo a sus necesidades.

La carretera Real Persa, es reconocida como las más antigua y larga con aproximadamente 2600-2900 km. A pesar de ser tan extensa, los romanos fueron los primeros en construir científicamente carreteras, estas se conformaban de una red amplia del territorio enlazados entre sí con las principales ciudades y puestos militares estratégicos. En sus comienzos eran caminos simples, libres de vegetación, que permitían el avance de los carruajes a la marcha rápida de los ejércitos.

En el siglo XIX, debido a la industria y la necesidad de nuevas carreteras, se concibió el MACADAN (sistema da financiamiento de los caminos), el cual se basaba en revestir la superficie de una capa de piedras apisonadas, mejorando la consistencia. Además, dando una forma arqueada para evacuar las aguas lluvias por cunetas laterales. Teniendo en consideración que el elemento fundamental en la carretera es la calzada.

Las vías actuales en el Ecuador, son el resultado de una lenta mejora de los senderos y rutas antiguas coloniales incaicas de complicado relieve en las serranías, pantanoso y ondulado en la costa y oriente. Las construcciones en sus inicios fueron de tipo manual, basándose en diseños y trazos primarios.

Una vez que se comercializaron los vehículos en el país, se realizaron modificaciones en cuanto a su clasificación y diseño mediante normas establecidas

por el Ministerio de Transporte y Obras Públicas (MTOP), las cuales parten de la ASSHTO, que son nuestro referente respecto a las normas y especificaciones técnicas que impusieron la normalización y estandarización de vehículos, estas medidas nos permiten establecer el diseño, dimensionamiento y clasificación de las carreteras.

El Ecuador, ha tendió grandes inversiones de proyectos viales realizadas por la MTOP (Ministerio de Transporte y Obras Publicas) en los últimos años, teniendo como resultado grandes obras de infraestructura vial con niveles adecuados de confort y seguridad, ubicando al Ecuador como el segundo mejor país de América del Sur en estado de carreteras, teniendo una puntuación de 5.1 en escala del 1 al 7 sobre la calidad de infraestructuras viales del país. Esta encuesta fue realizada por el Foro Económico Mundial (FEM) en el año del 2018.

La provincia de El Oro se ha lucrado con grandes infraestructuras viales por medio de la MTOP, debido a los Proyectos Binacionales entre Ecuador y Perú que se firmaron en el año de 1998. Estos acuerdos Binacionales sirvieron para las construcciones, rehabilitaciones, mejoramientos, mantenimientos de las carreteras beneficiándose el sur del Ecuador y el norte de Perú con la finalidad de tener vías en buen estado, fomentando un buen desarrollo económico para el país.

2.2 Bases Teórico - Científicas

2.2.1 Proyectos Viales.

Los proyectos viales, sirven de apoyo para el desarrollo de un país o región, por lo que, es de suma importancia que los estudios realizados de una vía sean reales o actualizados, esto servirá para desarrollar de una mejor manera la elaboración del

proyecto, y establecer cuantitativamente la demanda del transporte para poder analizar mejores alternativas.

El propósito de los proyectos viales es la disminución de los costos del transporte de áreas ya desarrolladas, aminorar la congestión del tráfico, servir de apoyo a planes de desarrollo y fomentar al esparcimiento y turismo, teniendo en cuenta que estos propósitos deben ser justificables teniendo en cuenta la inversión pública (Torrealba, 2015).

2.2.2 Tipos de Proyectos Viales.

Los proyectos viales, son realizados dependiendo del uso que se les proporcionara, según (Agudelo, 2002)., estos proyectos son:

- Proyectos de Construcción.
- Proyectos de Mejoramiento.
- Proyectos de Rehabilitación.
- Proyectos de Mantenimiento Rutinario.
- Proyectos de Mantenimiento Periódico.

• Provectos de mejoramiento.

Este tipo de proyectos, se encuentra relacionado con la modificación de la geometría y dimensiones de la vía con la finalidad de brindar un mejor nivel de servicio y ajustar las especificaciones técnicas para el cumplimiento de la vía.

- Incremento de Calzada.
- Construcción de Bermas y Carriles.
- Corrección de Alineamiento Horizontal y Vertical
- Construcción de Obras de Arte.
- Diseño y Construcción del Pavimento.

• Tratamiento de Riegos Superficiales. (Agudelo, 2002)

• Proyectos de rehabilitación.

Toma como referencia la recuperación de la naturaleza inicial de la vía, de manera que cumpla con las especificaciones y normas establecidas al diseñar la carretera.

Estas actividades para ejecutarse son las siguientes:

- Construcción de Obras de Arte
- Reconstrucción y Recuperación de la Capa de Rodadura, Base y Subbase.
- Obras de estabilización (Agudelo, 2002)

De esta manera se ha detallado de forma breve cómo funcionan los tipos de proyectos viales que existen a nivel global, teniendo en cuenta que el tipo de proyecto que se va a ejecutar para la ampliación de la vía Santa Rosa - Puerto Jelí seria proyectos de rehabilitación, debido que se toma como referencia el eje vial existente con la finalidad de obtener una carretera con mayor jerarquía.

2.2.3 Carreteras.

Se denomina carretera a la infraestructura de movilización pública o privada, el cual se encuentra diseñada para mejorar la circulación del transporte a través de ella, disminuyendo los tiempos y costos de viaje de la vía, brindando una mejor comodidad, seguridad y accesibilidad a las poblaciones permitiendo un desarrollo socioeconómico del país, provincia o ciudad.

Al realizar un proyecto de una carretera, el diseño geométrico es parte fundamental debido que ayuda a implementar la configuración geométrica tridimensional con el propósito de que la carretera brinde seguridad, comodidad estética, funcionalidad y compatibilidad con el medio ambiente (Cárdenas, 2013).

2.2.4 Clasificación de las Carreteras.

La clasificación de una carretera, se debe a diferentes aspectos que se pueden presentar, detallados a continuación.

- Según su Capacidad por Tráfico.
- Según su Función.
- Según sus Características
- Según su relieve.

• Según su capacidad por tráfico.

La clasificación por capacidad de tráfico, se refiere al número de vehículos que transitan por la vía diariamente, esto permitirá que la carretera sea cómoda, eficiente y segura para los transeúntes. Teniendo en cuenta que en el Ecuador existen vías que sobrepasan la demanda vehicular, en algunos casos siendo superior a 80.000 vehículos diarios, se podrían presentar como consecuencia accidentes, tiempos de demora y un alto nivel de costos de viaje.

Por ende, al momento de diseñar una carretera se debe sugerir un periodo de diseño entre 15 a 20 años para poder ejercer de manera precisa la clasificación por tráfico. El cual podemos observar en la siguiente Tabla (MTOP, 2003).

FUNCIÓN CLASE DE CARRETERA TRÁFICO PROYECTADO (TPDA) R-IoR-II Más de 8000 vehículos I De 3000 a 8000 vehículos Ш De 1000 a 3000 vehículos De 300 a 1000 vehículos Ш I۷ De 100 a 300 vehículos VECINAL ٧ Menos de 100 vehículos

Tabla 2: Clasificación en Función del Tráfico Proyectado.

El TPDA pertinente es el volumen de tráfico promedio diario anual proyectado a 15 o 20 años. Cuando el pronóstico de tráfico para el año sobrepasa los 7000 vehículos debe considerarse la posibilidad de construir una autopista. Para efectuar el diseño definitivo se debe trabajar con el tráfico en vehículos equivalentes.

Fuente: (MTOP, 2003)
Elaborado por: Kevin Chavez – Alex Pallo

• Según su función.

Esta clasificación se basa según la necesidad en la ópera la carretera o del interés de la nación. A continuación, se clasifican en los siguientes:

a) Corredor arterial.

Son las vías más importantes que existen, debido que conectan con el continente hacia las capitales de cada provincia, puertos marítimos y pasos fronterizos. Estas vías deben brindar unas excelentes condiciones de seguridad, comodidad y estándares geométricos manteniendo una conformidad entre los transportistas.

b) Vías colectoras.

Estas vías son de mediana escala, debido que recolectan el tráfico de las zonas rurales, el cual circulaban a través de caminos locales hasta llegar a la red vial nacional. Estas vías deben cumplir con todas las especificaciones técnicas para llegar a efectuarse de manera correcta su función.

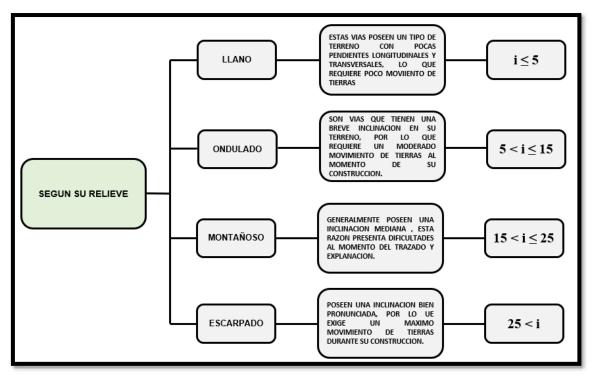
c) Caminos vecinales.

Las vías vecinales, están enfocadas en recoger el tráfico que llega desde las zonas rurales orientadas a la producción agrícola y turismo, que buscan trasladarse hacia las vías con mayor jerarquía.

Según sus características.

En el ecuador existen vías que cuentan con calzadas separadas o únicas, detalladas a continuación.

a) Calzadas separadas.


Son las vías que poseen una separación física con una altura mayor a 15cm, estas pueden tener varias calzadas en el mismo sentido o en sentido contrario con limitación de ingresos directos, se las puede apreciar en las carreteras llamadas autopistas o multicarril.

b) Calzada única.

Las vías de calzada única, se distinguen por no poseer separación física para ambos sentidos, estas vías de calzada única poseen doble sentido de circulación, una por carril.

• Según su relieve.

Este tipo de vías, se basa al tipo de terreno que existe en la zona, por el cual se tiene en consideración las pendientes de máxima inclinación media del terreno. El cual se muestra a continuación en la siguiente ilustración.

Ilustración 2:Clasificación de la vía según su Relieve Transversal. **Fuente:** (MTOP, 2003)

Elaborado por: Kevin Chavez – Alex Pallo

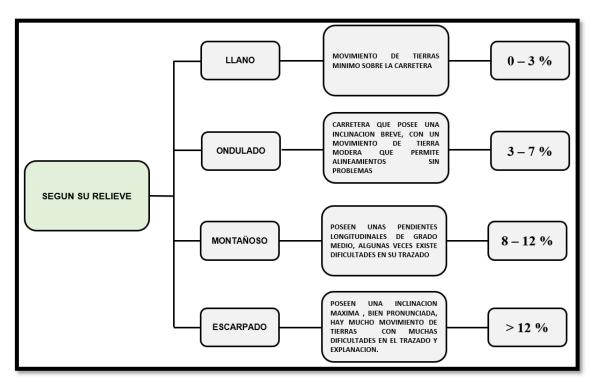


Ilustración 3: Clasificación de la vía según su Relieve Longitudinal.

Fuente: (MTOP, 2003)

Elaborado por: Kevin Chavez - Alex Pallo

2.2.5 Criterios que Definen la Función de una Vía.

Existen varios que pueden determinar la función de una carretera, siendo entre los principales y necesarios el estudio de tráfico, el cual, ayudará a definir la oferta de acuerdo a demanda que tenga la vía.

2.2.6 Tráfico.

El tráfico es la circulación de vehículos o personas por un área determinada con respecto al tiempo en las que existe varios tipos de caminos.

Con respecto a Cal & Mayor (2018): "tránsito de personas y circulación de vehículos por calles, carreteras, caminos, etc."

El tráfico es una de las medidas cuantitativas principales para el diseño de los pavimentos, debido que nos proporcionara la cantidad de vehículos que transitara por la carretera, estos datos servirán para observar la carga que soportara la vía en el diseño definitivo del mismo.

El tráfico permitirá reconocer en qué nivel de servicio se encuentra la vía, de manera que; así mismo, mediante esta información se establecerá las condiciones de diseño estructural del pavimento y obtener un diseño geométrico adecuado para el volumen de vehículos que circularán por la misma (MTOP, 2003).

2.2.7 Volúmenes de Tráfico.

Como indica (CAL&MAYOR, 2018): "El volumen de tránsito es el número de vehículos o personas que cruzan por un mismo lugar durante un determinado tiempo."

El estudio del volumen de tránsito, es de vital importancia para determinar, planear y operar la circulación vehicular, por el cual se podrá saber las variaciones periódicas de los volúmenes dentro de las horas pico o máximas, el cual servirá para cuantificar los flujos máximos existentes. Esto ocurre debido al crecimiento de los vehículos en

temporadas de feriados en el transcurso del año, este estudio permitirá realizar el diseño adecuado para que la vía preste el nivel de servicio apropiado.

$$TPDA = \frac{TA}{365} Veh/Anuales$$

Tráfico promedio diario.

El tráfico promedio diario, es la unidad de medida del tráfico que indica la cantidad de vehículos que circulan en ambos sentidos en la calzada.

Tráfico promedio diario se define como la magnitud total de vehículos que transitan en la vía entre un tiempo. Expresándose de la siguiente manera. (CAL&MAYOR, 2018)

$$TPD = \frac{N}{1 \, dia < t < 1 \, a\tilde{n}o}$$

Donde:

N: el número de vehículos que circulan durante el día

a) Tráfico promedio diario semanal (TPDS):

Es la cantidad de vehículos que circulan por un determinado lugar de la vía en un tiempo de una semana continua (CAL&MAYOR, 2018)

$$TPDS = \frac{TS}{7} Veh/semanal$$

Según las especificaciones del MTOP, el conteo mínimo que se puede realizar para determinar el TPDS es de 4 días a la semana, considerando dos días normales (lunes – viernes) y dos especiales (sábados – domingos), por consiguiente, tendremos la siguiente ecuación:

$$TPDS = \frac{5}{7} \Sigma \left(\frac{T_n}{m} \right) + \frac{2}{7} \Sigma \left(\frac{T_e}{m} \right)$$

b) Tráfico Promedio Diario Mensual (TPDM):

Está relacionado de la cantidad de vehículos que se trasladan por un lugar de la vía en el tiempo de un mes. (CAL&MAYOR, 2018)

$$TPDM = \frac{TM}{30} Veh/Mensual$$

c) Tráfico Promedio Diario Anual (TPDA):

Es la relación del tránsito total de los vehículos que circuló por una determinada vía durante un año, entre el total de los días que transitó el volumen promedio.

• Volumen de Tráfico Horario.

Los volúmenes de tránsito, son el número de unidades de todo tipo de automotor, que cruza por una área determinada previamente escogida por un intervalo de tiempo dado, estos estudios de volúmenes de tránsito permitirán obtener la información para el desarrollo de estimaciones razonables de la calidad de servicios que se le prestará a los usuarios dentro de una vía.

a) Volumen horario máximo anual (VHMA):

Es la cantidad máxima horario en el que los vehículos transitaron por un lugar en específico en el periodo de un año. (CAL&MAYOR, 2018)

b) Volumen horario de máxima demanda (VHMD):

Es la magnitud en la que transitaban los vehículos por un lugar en específico en el periodo de 60 minutos consecutivos (CAL&MAYOR, 2018)

2.2.8 Composición del Tráfico.

El vehículo, es un medio motorizado que sirve como transporte para el traslado de personas, animales u objetos de un lugar a otro, utilizando principalmente las carreteras.

Los vehículos poseen características especiales de operación, por lo tanto, estas se deben tomar en cuenta al momento de diseñar las carreteras, debido a sus variados tamaños y pesos, en el Ecuador, existen dos tipos de vehículos denominados de la siguiente manera.

Vehículos livianos.

Son vehículos que constan de cuatro ruedas, destinadas al transporte de pocas personas o mercancías livianas, con capacidad hasta de hasta 8 pasajeros con una composición de ruedas simples en el eje trasero, también se toma en consideración a las motocicletas.(MTOP, 2003).

En la actualidad, debido al aumento considerable de los vehículos de transporte de dos ruedas (motocicletas) en el Ecuador, en especial en los sectores urbanos, para el presente trabajo de titulación, se ha considerado que, cada 3 motocicletas equivalen a un vehículo liviano.

• Vehículos Pesados.

Se consideran vehículos pesados como camiones, combinaciones de camiones (remolques y semi remolques) y buses, considerados con un peso mayor a 4 toneladas con una composición de ruedas dobles en sus ejes traseros.

	CUADRO DEMOSTRATIVOS DETIPO DE VEHÍCULOS MOTORIZADOS REMOLQUES Y SEMIREMOLQUES									
TIPO	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE	DESCRIPCIÓN				MÁXIN	LONGITUDES MÁXIMAS PERMITIDAS (metros) Largo Andro Alto			
2 D	2D 3 4		ΙΙ	CAMIÓN DE 2 EIES PEQUEÑO	7	5,00	2,60	3,00		
20 A	2 DA 3 7		ΙĪ	CAMIÓN DE 2 EIES MEDIANOS	10	7,50	2,60	3,50		
2DB	2 D8	<u></u>	ΙΙ	CAMIÓN DE 2 EJES GRANDES	18	12,20	2,60	4,10		
3-A	3A 7 20	6	I II	CAMIÓN DE 3 EJES	27	12,20	2,60	4,10		
4·C	4C	<u></u>	I III	CAMIÓN DE 4 EIES	31	12,20	2,60	4,10		
40	4-0 12 4-0 12 20		II II	CAMIÓN CON TAMBEM DIRECCIONAL Y TAMBEM POSTERIOR	32	12,20	2,60	4,10		
V2DB		 -	ΙΙ	VOLQUETA DE DOS E.ES 8 m³	18	12,20	2,60	4,10		
V3A			I II	VOLQUET A DE TRES EJES 10-14 m³	27	12,20	2,60	4,10		
vzs	7 20		I II	VOLQUETA 25 DE 3 EJES 16 m³	27	12,20	2,60	4,10		
Т2	7 11	₽	II	TRACTO CAMIÓN DE 2 EIES	18	8,50	2,60	4,10		
Т3		6 	ΙЩ	TRACTO CAMIÓN DE 3 EJES	27	8,50	2,60	4,10		
S3	53		III	SEMIREMOLQUE DE 3 EJES	24	13,00	3.00	4,30		
52	52 P 20		II	SEMIREMOLQUE DE 2 EJES	20	13,00	3.00	4,30		
S1	51 P 11	_	Ī	SEMIREMOLQUE DE 1 EJE	11	13,00	3.00	4,30		
R2	R2	-00-	1 1	REMOLQUE DE 2 E.E.S	22	10,00	3.00	4,30		
R3	R3	"O""O'O"	I II	REMOLQUE DE 3 EJES	31	10,00	3.00	4,30		
B1	81	-	Ī	REMOLQUE BALANCEADO DE 1 EJE	11	10,00	3.00	4,30		
B2	82	-00-	Ħ	REMOLQUE BALANCEADO DE 2 EJES	20	10,00	3.00	4,30		
83	83	-000-	III	REMOLQUE BALANCEADO DE 3 EJES	24	10,00	3.00	4,30		

Ilustración 4:Vehículos Motorizados con sus Dimensiones y Pesos. **Fuente:** (MTOP, 2003)

ПРО	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE	DESCR IPCIÓN		PESO BRUTO VEHCULAR MÁXIMO PERMITIDO (tone ladas)	MÁXIM	NGITUDI AS PERN (m etros) Ancho	MITIDAS
281	251 7 11 11	0 o o III	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 1 EJE	29	20,50	2,60	4,30
2\$2	252 7 11 20	o o II II	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 2 EJES	38	20,50	2,60	4,30
283	253 7 11 24	6 o ooo I I III	TRACTO CAMIÓN DE 2 EJES Y SEMI REMOLQUE DE 3 EJES	42	20,50	2,60	4,30
351	351 7 20 11	oo o I II I	TRACTO CAMIÓN DE 3 EJES Y SEMIREMOLQUE OE 1 EJE	38	20,50	2,60	4,30
3\$2	352 7 20 20	€ ∞ •∞ I II II	TRACTO CAMIÓN DE 3 EJES Y SEMI REMOLQUE DE 2 EJES	47	20,50	2,60	4,30
383	353 7 20 24	6 00 000 I Ⅲ Ⅲ	TRACTO CAMIÓN DE 3 EJES Y SEMI REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2R2	7 11 11 11		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 2 EJES	40	20,50	2,60	4,30
2R3	7 11 11 20	OII III	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE DE 3 EÆS	48	20,50	2,60	4,30
3R2	382		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 2 EJES	48	20,50	2,60	4,30
3R3	3 A3 7 20 11 20	o ool∏∏	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE DE 3 EJES	48	20,50	2,60	4,30
2B1	7 11 11		CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 1 EJES	29	20,50	2,60	4,30
2B2	7 11 20	II II	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 2 EJES	38	20,50	2,60	4,30
2B3	283 7 11 24	G-o-o-o-II III	CAMIÓN REMOLCADOR DE 2 EJES Y REMOLQUE BALANCEADO DE 3 EJES	42	20,50	2,60	4,30
3B1	7 20 11	———I II I	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE 8 ALANCEADO DE 1 EJES	38	20,50	2,60	4,30
3B2	7 20 20		CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 2 EJES	47	20,50	2,60	4,30
3B3	7 20 24	——————————————————————————————————————	CAMIÓN REMOLCADOR DE 3 EJES Y REMOLQUE BALANCEADO DE 3 EJES	48	>20,50	3.00	4,30

Ilustración 5:Vehículos Motorizados, Posibles Combinaciones. **Fuente:** (MTOP, 2003)

2.2.9 Aforo de Tráfico.

En el Ecuador, se puede observar diariamente la presencia del tráfico vehicular, teniendo en cuenta que en ciudades grandes hay un mayor volumen de vehículos, el cual ocasionan varios inconvenientes en el que se destaca el congestionamiento.

Un aforo de tráfico, es un sistema de medida (conteo) que sirve para tener una determinada cantidad de vehículos que transitan por un punto de observación en un periodo de tiempo.

2.2.10 Clasificación de Conteo Vehicular.

En la actualidad, existen varias técnicas para realizar un conteo vehicular, según Vargas, Rincón & González (2012), se puede efectuar su respectiva clasificación de la siguiente manera:

- Conteos direccionales: registran volúmenes según la dirección y sentido del flujo.
- Conteos de clasificación: se clasifican según el tipo de vehículo, pesos, dimensiones y numero de ejes.
- Conteos en intersecciones: registran volúmenes por el tipo de movimiento (giro a la izquierda, giro a la derecha y directo) y por el tipo de vehículo (moto, automóvil, bus, pesados, etc.).
- Conteos en cordones: se realizan en una zona determinada, como por ejemplo, el centro de una ciudad, con la finalidad de conocer en los periodos de tiempos la cantidad de vehículos que entran y salen del lugar.

2.2.11 Método de Conteo.

Los métodos de conteo nos permiten registrar el volumen de vehículos en un intervalo de tiempo, con el objetivo realizar la respectiva clasificación de la vía. Existen 2 métodos de conteo nombrados a continuación:

Conteo manual.

Para realizar el conteo manual, se debe ubicar el personal en las estaciones de conteo para el respectivo trabajo, de esta manera se obtiene una contabilización más detallada de los vehículos, obteniendo una clasificación por: el tipo de automotor, uso de carriles y movimientos o giros de intersección.

· Conteo mecánico.

Para el conteo mecánico, se utilizan dispositivos programados que permiten recaudar información cada que cruza un automotor, sin la necesidad de recaudar un personal. Estos dispositivos pueden ser:

- a) Detectores de neumáticos; funcionan por impulsos de aire, ocasionada por la presión del vehículo.
- b) Detectores magnéticos; funcionan en base a campos magnéticos al momento que cruza una masa metálica.
- c) Detectores de radar; están compuestos por ondas magnéticas de un aparato emisor y receptor.
- d) Contadores electrónicos; están compuestas por sensores que trabajan junto con cámaras de video, radares y paneles solares.

2.2.12 Proyección del Tráfico.

Una vez teniendo el conocimiento sobre el TPDA, volúmenes de tráfico, dimensiones y pesos de los vehículos, esta información servirá para poder establecer la condiciones, especificaciones técnicas y diseño geométrico en que operará la vía. Pero antes se debe considerar los siguientes tráficos nombrados a continuación.

Tráfico actual.

El tráfico actual, es la cantidad volumétrica de los vehículos que atraviesan la vía antes de su reconstrucción o mejoramiento.

• Tráfico generado.

El tráfico generado, es aquel que está constituido por la cantidad de viajes que se realizarían si la propuesta llegara a efectuarse. Por lo que, el tráfico generado solo se origina al pasar los años de la culminación de la vía. Por ende, para el tráfico generado se le establece un porcentaje de hasta el 25% del tráfico actual.

Tráfico por desarrollo.

El tráfico por desarrollo, se produce por el incremento de áreas de influencia de la carretera. Esta composición de tráfico puede incrementarse hasta una parte o todo el periodo de estudio.

Tráfico futuro.

Para tráfico futuro, se debe tener en cuenta la proyección de un periodo de tiempo entre 15 a 20 años basado en el volumen del tráfico actual, el tráfico generado y tráfico por desarrollo. El cual servirá para la clasificación de la vía y demás aspectos de diseño geométrico.

2.2.13 Nivel de Servicio.

El nivel de servicio, es una medida cualitativa que se encarga de describir las condiciones de operación de un flujo de vehículos y de la percepción de los conductores o pasajeros. También se puede decir, que el nivel de servicio es una medida de calidad que la vía ofrece al usuario. En cuanto a calidad, se refiere a los factores que brinda la vía como: la velocidad, libertad de maniobra, las interrupciones a la circulación, la comodidad y la seguridad vial.

El HCM 2000 (Highway Capacity Manual) establece 6 niveles de servicio, identificados subjetivamente por las letras desde la A hasta la F, donde el nivel de servicio A se logra un flujo vehicular totalmente libre, mientras que el nivel F alcanza un flujo forzado. A continuación, se muestra la siguiente tabla.

Tabla 3: Niveles de Servicio.

180	 La velocidad de los vehículos es la que elige libremente el conductor 	M. market and
A	 Cuando un vehículo alcanza a otro más lento puede adelantarlo sin sufrir demoras 	
	Condiciones de circulación libre y fluida	
	 La velocidad de los vehículos más rápidos se ve influenciada por otros vehículos 	
В	 Pequeñas demoras en ciertos tramos, aunque sin llegar a formarse colas 	5 5
	 Circulación estable a alta velocidad 	A A A
	 La velocidad y la libertad de maniobra se hallan más reducidas, formándose grupos 	M. market
C	 Aumento de demoras de adelantamiento 	
	 Formación de colas poco consistentes 	
	 Nivel de circulación estable 	
	 Velocidad reducida y regulada en función de la de los vehículos precedentes 	No.
D	 Formación de colas en puntos localizados 	
	 Dificultad para efectuar adelantamientos 	200
	 Condiciones inestables de circulación 	
	 Velocidades de operación bajas y volúmenes próximos a la capacidad máxima 	
E	 Formación de largas colas de vehículos 	
	 Imposible efectuar adelantamientos 	
	Define la capacidad de una carretera	- MA / W. P 1
	 Formación de largas colas y velocidades de operación muy bajas 	
F	 La intensidad sobrepasa la capacidad de la vía 	
	 Circulación intermitente mediante interrupciones y rupturas de flujo 	
	 La circulación se realiza de forma forzada 	

Fuente: (HCM, 2010)

2.2.14 Ejes Equivalentes (ESAL'S).

Los ejes equivalentes, es una unidad de medida dispuesta por la AASHTO 93, el cual, es la cantidad de repeticiones del eje de carga equivalente de 18 kips por un determinado tiempo. Se debe utilizar esta carga equivalente para poder realizar los

cálculos respectivos, debido que el tráfico esta combinado por diferentes dimensiones, pesos y número de ejes de los vehículos.

Estos elementos son tomados en cuenta para realizar el cálculo del factor de equivalencia de carga, los cuales permitirán diseñar la capa de rodadura del pavimento flexible.

2.2.15 Factor de Equivalencia de Carga.

Los factores equivalentes de carga, son convertidos de toneladas a kips, de esta manera se obtiene un valor numérico para ser ingresado a los ábacos de factores de equivalencia de carga, (los cuales fueron desarrollados por el ROAD TEST de la AASHO), que están configurados por diferentes tipos de ejes (simples, tándem y trídem).

Una vez obtenidos los valores numéricos de los respectivos ejes, se deberá realizar el producto en base a la tasa de crecimiento anual vehicular de la región en que se desarrollará el proyecto y el periodo de diseño en años de serviciabilidad que tendrá la vía. Para de esta manera poder diseñar un buen pavimento, el cual les brinde seguridad y comodidad a los usuarios.

2.2.16 Suelos.

El suelo es la formación de capas compuestas de materiales meteorizados, el cual proviene de la alteración y desintegración física y química de las rocas. El suelo es la composición de un producto final del tiempo que está compuesta por la combinación de materiales parentales, organismos y clima, teniendo como resultado su estructura, consistencia, textura y color (Portal de Suelos, 2020).

2.2.17 Estudios de Suelos.

Los estudios de suelo, consisten en determinar las propiedades físico-mecánicas del terreno. Estas características son muy útiles para la planeación, diseño y ejecución de un proyecto, tomando medidas preventivas en caso de que exista condiciones especiales en el terreno.

Subrasante.

Terreno natural sobre el cual descansa la estructura el pavimento, dependiendo de las características mecánicas del suelo, mediante su estudio se podrá saber si abarca los parámetros principales por medio de su CBR o por su clasificación, determinando si es un material expansivo o no. Por lo tanto, debe cumplir las siguientes funciones:

- a) Soportar las cargas de tránsito que transmite el pavimento
- b) Distribuir y transmitir las cargas al terraplén
- c) Evitar que los materiales plásticos del terraplén se mezclen con la estructura del pavimento.

Existe casos en que las condiciones que presenta las propiedades del terreno natural se los pueden mejorar simplemente utilizando la compactación por capas logrando un mejoramiento en su capacidad portante. Como es sabio, se conoce que al reducir los vacíos se aumenta la capacidad portante del suelo.

Tabla 4: Categorías de Subrasante.

Categorías De Subrasante	CBR
S ₀ : Subrasante Inadecuada	CBR < 3%
S ₁ : Subrasante Pobre	De CBR ≥ 3% A
	CBR < 6%
S ₂ : Subrasante Regular	De CBR ≥ 6 % A
5215 abrabante Regular	CBR < 10%
S ₃ : Subrasante Buena	De CBR ≥ 10 % A
2,124,274,244,244,244,244,244,244,244,244,2	CBR < 20%
S ₄ : Subrasante Muy Buena	De CBR ≥ 20 % A
January Duomi	CBR < 30%
S ₅ : Subrasante Excelente	De CBR ≥ 30 %

Fuente: (Nevi-2B, 2013)

Según (Das 2011^a). Los ensayos que se deben realizar en el laboratorio de suelos para el diseño de pavimentos son los siguientes:

- Análisis Granulométrico
- Límites de Atterberg
- Contenido de Humedad
- Ensayo de Compactación Proctor
- C.B.R (Relación de Soporte California).
- Análisis granulométrico.

Consiste en saber las medidas de los granos mediante tamices, esto permitirá agrupar y clasificar las partículas del material, separándolas en diferentes tamaños. Se mide la cantidad de suelo retenido en cada tamiz y se determina el porcentaje acumulado del suelo que pasa a través de cada uno. (Das 2011).

• Límites de atterberg.

Los límites de Atterberg, nos permite identificar las propiedades del suelo y los diferentes estados en que se puede encontrar.

En los siguientes ensayos presentamos los estados que presenta el suelo dependiendo su contenido de agua: (Das, 2011).

- a) Limite liquido (LL): Es el porcentaje de humedad de un suelo, que delimita la transformación entre un estado líquido y uno plástico, estos dependen de la cantidad de agua que contenga la muestra (Das, 2011).
- b) Limite plástico (LP): Es el porcentaje más bajo de humedad de un suelo, el cual su consistencia puede ser de estado semi solida a plástico o viceversa, dependiendo de la cantidad de agua (Das, 2011).
- c) Índice plástico (IP): Es el porcentaje de contenido de agua, en el que un material se encuentra en estado plástico, se puede obtener mediante la diferencia del límite líquido y el límite plástico (Das, 2011).

Contenido de humedad.

El contenido de humedad, es la consistencia inicial del terreno, es decir, es la cantidad de agua que existe dentro de un material que presenta un porcentaje del peso original de la muestra. Para saber el porcentaje del peso inicial de la muestra, se debe realizar la relación entre el peso del agua y el peso de la muestra seca introducida en el horno durante 24 horas a 110°C.

• Ensayo de compactación Proctor.

El ensayo Proctor, es el aumento de la densidad del suelo seco realizado de manera mecánica, este incremento de densidad se debe al contenido de humedad que se le brinda al suelo y la energía de compactación, debido que el agua funciona

como lubricante en las partículas del suelo y al compactar reacomodan las partículas a un estado más denso. (Das, 2011).

C.B.R (Relación de soporte california).

El ensayo CBR, mide la resistencia al esfuerzo cortante del suelo, este ensayo, sirve para expresar la resistencia y deformación del material mediante la carga de penetración (Ensayo CBR, 2013). Este ensayo estudia los siguientes parámetros:

- 1) Humedad óptima y densidad máxima
- 2) Resistencia a la penetración

Una vez establecidos los parámetros y características geotécnicas de la subrasante, se determinan si el suelo cumple con el CBR adecuado, en caso de no cumplir se procede a sustituir el material o se realiza el proceso de mejoramiento estabilización del suelo de fundación.

2.2.18 Materiales.

Los materiales son los elementos primordiales para la construcción de obras de ingeniería civil, y dependiendo de la calidad del mismo se logrará un buen resultado final en la construcción de la infraestructura proyectada.

Mezclas asfálticas.

Para la construcción vías terrestres, se utiliza uno de los elementos importantes como lo son las mezclas asfálticas. Estas mezclas están constituidas por diferentes materiales, los cuales según el costo y calidad de ellos dependerá la vida útil de la carretera.

Las mezclas asfálticas, es el resultado de combinar agregados pétreos con material asfaltico en condiciones exactas, sabiendo que, la cantidad de agregados podría variar dependiendo de los requerimientos que debe cumplir la carretera obtenido una superficie de rodamiento cómoda y segura.

• Mejoramiento de la subrasante.

Para el mejoramiento de la subrasante, los materiales que son seleccionados no deben presentar materia orgánica. Debe poseer un material que granulométricamente no contenga gravas mayores de 4 pulgadas, y no presentar suelos finos mayores las 20% pasante del tamiz N° 200.

Tabla 5: Especificaciones de Mejoramiento de la Subrasante.

MATERIAL DE MEJORAMIENTO DE LA SUBRASANTE.							
CARACTERISTICAS	PORCENTAJES						
Limite Liquido (tamiz N° 40)	≤ 25 %						
Índice de Plasticidad	< 9 %						
CBR	> 20 %						

Fuente: (MTOP, 2003)

Base.

La base se compone de agregados gruesos y finos seleccionados y procesados, su función es resistir y transmitir los esfuerzos generados por el tránsito de la capa de rodadura a la subbase. La base debe cumplir con las especificaciones técnicas según la (MTOP 2003). En el que dice que el pasante del tamiz N°40, el límite líquido debe ser menor al 35%, el índice de plasticidad entre 6 y 9%, y CBR tiene que ser mayor o igual al 80%.

Los tipos de base granular según su composición son:

- 1) Base Clase 1; Conformado por agregados gruesos y finos, triturados en 100% en planta.
- 2) Base Clase 2; Constituidos por grava triturada y roca al menos el 50% en peso, se pueden localizar según los limites granulométricos.
- 3) Base Clase 3; Compuestos por agregados gruesos triturado al menos el 25%.

4) Base Clase 4; constituidos en mayoría por material cribado naturalmente y triturado. (MTOP,2003)

Subbase.

Son agregados con propiedades plásticas y resistencia bajas, que son mejoradas mediante estabilización mecánica, Protege la base, evitando que los materiales de la subrasante no se mezclen con ella, también soporta los esfuerzos transmitidos de las capas superiores debido a las cargas de los vehículos, la subbase debe cumplir con los siguientes parámetros:

- a) El pasante del tamiz N°40 debe tener un límite líquido menor al 25% y un índice plástico menor al 6%.
- **b)** El desgaste del ensayo de abrasión de los Ángeles en los agregados gruesos no debe ser mayor al 50%.
- c) El porcentaje de CBR de ser mayor o igual al 30%.

De acuerdo con la (MTOP, 2003). Existen varias tipos de subbases nombrados a continuación:

- Subbase Clase 1; Posee agregados obtenidos por trituración de grava o roca, el 30% del agregado preparado debe ser por trituración.
- 2) Subbase Clase 2; Constituidos por agregados de yacimientos de roca fragmentadas naturalmente, ya sea por trituración o cribado.
- Subbase Clase 3; Al menos el 30% de los agregados deberán ser triturados (MTOP,2003).

2.2.19 **Drenaje.**

El drenaje es un método de evacuación de las aguas superficiales provocadas por la lluvia o por aguas de nivel freático, asegurando el traslado de exceso de agua o líquidos por medio de zanjas, cañerías o tubos.

El sistema de drenaje en una carretera, tiene como finalidad conservar la estabilidad de la superficie y la estructura de la plataforma, eliminando el exceso de agua superficial y subsuperficial con obras adecuadas de drenaje.

Para el presente trabajo de titulación, se utilizará el drenaje para el cálculo de la estructura del pavimento flexible (coeficientes de drenaje, que se encuentra en la **tabla 22**) y el drenaje para el diseño de la vía.

Drenaje superficial transversal:

Permite la circulación de los cauces bloqueados por la infraestructura vial, evitando que la estructura sufra daños. Entre ellas se destaca los puentes, alcantarillas, ductos cajón, etc.

Drenaje superficial longitudinal:

Recogen los líquidos caídos sobre la plataforma y taludes de forma paralela a la calzada de la carretera, siendo encauzados de manera que los flujos no produzcan daños en la vía ni afecte su tangibilidad. Entre estas se destacan las cunetas, sumideros, colectores, etc.

• Método de TALBOT (Método Empírico).

El método de Talbot, utiliza una fórmula empírica principal para la determinación preliminar del área hidráulica necesaria, Esta fórmula brinda resultados aproximados más parecidos a los valores promedios de otras fórmulas de otros autores.

La expresión de la fórmula de Talbot es la siguiente:

$$a = 0.183 c \sqrt[4]{A^3}$$

DONDE:

a: Área hidráulica necesaria en la obra, en metros cuadrados (m²).

A: Área de la cuenca en hectáreas (Ha)

C: coeficiente relacionada con las características del terreno (adimensional).

• Coeficiente de escorrentía.

Es un valor adimensional comprendido entre 0 - 1, Se determina con la relación de la precipitación que circula superficialmente y la precipitación total.

Este coeficiente dependerá de la zona y los materiales que conforman la superficie del terreno.

Tabla 6: Coeficientes de Escorrentía.

TIPO DE TERRENO	COEFICIENTE DE ESCORRENTIA
Pavimentos de adoquín	0.50 - 0.70
Pavimentos	0.70 - 0.95
Pavimentos	0.80 - 0.95
Suelo arenoso con vegetación y gradiente 2% - 7%	0.15 – 0.20
Suelos arcilloso con pasto y gradiente 2% - 7%	0.25 – 0.65
Zonas de cultivos	0.20 - 0.40

Fuente: (Nevi-2B, 2013)

• Período de retorno Tr.

El periodo de retorno, es definido como el lapso en el que un evento puede ser superado o igualado en magnitud por lo menos en una ocasión.

Tabla 7: Periodos de Retorno para Diseño.

Tipo de obra	Tipo de vía	Periodo de ret	orno (T, años)	Vida útil supuesta (n, años)	Riesgo de falla (%)		
.,		Diseño (3)	Verificación (4)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Diseño	Verificación	
Puentes y viaductos	Carreteras	200	300	50	22	15	
,	Caminos	100	150	50	40	28	
Alcantarillas (S> 2m²) o H terraplén≥10 m y	Carreteras	100	150	50	40	28	
estructuras enterradas	Caminos	50	100	30	45	26	
	Carreteras	50	100	50	64	40	
Alcantarillas S< 2m ²	Caminos	25	50	30	71	45	
Drenaje de la	Carreteras	10	25	10	65	34	
plataforma	Caminos	5	10	5	67	41	
Defensas de riberas	Carreteras	100	-	20	18	-	
	Caminos	100	-	20	18	-	

. S= Sección útil de la alcantarilla

. Fuente: (Nevi-2B, 2013)

2.2.20 Pavimentos.

El pavimento, es una estructura conformada por capas de diferentes materiales, capaces de soportar las cargas generadas por el tráfico, la cual está apoyada por la subrasante.

El pavimento, se construyen y diseñan de manera técnica, para su construcción se emplean materiales apropiados con una compactación adecuada. Por lo tanto, necesitan cumplir con los parámetros adecuados nombrados a continuación:

- 1) Soportar las cargas del tránsito para el cual fue diseñado.
- 2) La superficie de la calzada tiene que contar con las señales de seguridad vial, evitando deslumbramientos y reflejos.
- 3) Permitir el flujo libre de vehículos y resistir el efecto abrasivo del pavimento con las llantas del vehículo.
- 4) Superficie uniforme e impermeable
- 5) Color y textura adecuada

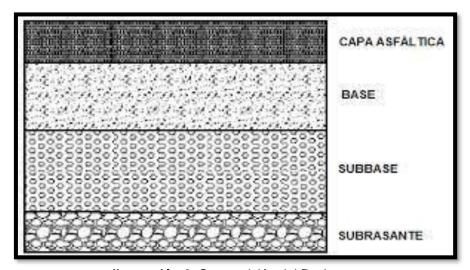
2.2.21 Clasificación del Pavimento.

Existen varios tipos de pavimentos que se clasifican dependiendo de su capa de rodadura, mencionados a continuación.

Pavimento rígido.

Es aquel que está constituido por una capa (losa) de concreto como material principal, esta capa de hormigón hidráulico puede ser concreto armado o concreto simple con juntas.

Pavimento articulado.


Este pavimento posee en la superficie de rodadura adoquines de concreto más una capa de agregado fino, con el fin de que se encuentre bien comprimido o ajustado,

por lo que se considera un tipo de pavimento moderno, seguro, efectivo y de rápida construcción.

Pavimento flexible.

Aquellos cuyas capas que los constituyen poseen bajos valores de resistencia a la flexo-tracción. Se conforma principalmente de una capa bituminosa (carpeta asfáltica), que se asienta sobre dos capas granulares denominadas base y subbase. Estas capas descansan en una capa de suelo compactado llamado subrasante.

En el presente trabajo de titulación, nos centraremos en el pavimento flexible, debido que, esta estructura se va a implementar en dicho proyecto.

Ilustración 6: Composición del Pavimento **Fuente:** (MTOP, 2003)

Elaborado por: Kevin Chavez - Alex Pallo

2.2.22 Criterios que Describen los Pavimentos Flexibles.

Como es sabio, el pavimento flexible es una estructura que se deflexiona al momento de recibir las carga que transitan sobre la vía. Por lo tanto, su funcionamiento depende de los elemento nombrados a continuación:

1) Capa de rodadura: Capa superior del pavimento, compuesta por mezcla de agregados y materiales pétreos, con la propiedad de resistir y transmitir el

desgaste debido al flujo vehicular y presiones altas de los neumáticos, entre otras funciones tenemos:

- a) Proporciona resistencia al deslizamiento
- **b)** Disminuye tensiones verticales encima de la capa base, de esta manera controla deformaciones plásticas que pueden producirse.
- 2) Base: Capa que se encuentra por debajo de la carpeta de rodadura. Está conformada por material triturado y cribado fortalecidos con material fino, la base está conformada por 4 clases. El cual son mencionadas anteriormente en el titulo Materiales.
- 3) Subbase: El espesor de la subbase consiste en la cantidad de vehículos que circulara por la vía, soportando la carga del tráfico que tendrán uso de la misma. Dicha capa, se coloca sobre la subrasante que previamente fue tratada y aprobada. Existen 3 clases de subbase, el cual mencionamos anteriormente en el titulo Materiales.

Nota: En algunas ocasiones, dependiendo de la calidad de la subrasante puede ser necesario colocar una capa de material de mejoramiento.

2.2.23 Diseño Geométrico.

Es un elemento tridimensional que se basa en situar el trazado de la vía en el terreno determinando sus características geométricas, teniendo en cuenta las relaciones de los elementos físicos de las carreteras y las características operacionales de los vehículos.

2.2.24 Elementos que Definen el Diseño Geométrico.

Las condiciones para poder desarrollar el diseño geométrico en las carreteras sobre una superficie son varios, se describen a continuación.

Alineamiento horizontal.

Conjunto de líneas rectas enlazadas por curvas circulares o espirales, el cual genera un cambio de dirección, con el propósito de brindar una circulación cómoda y segura.

Los elementos del alineamiento horizontal son los siguientes:

- 1) Rectas.
- 2) Curvas.
- **3)** Eje.
- 4) Abscisas.
- **5)** Estaciones.
- 6) Coordenadas.
- 7) Dirección.

· Velocidad de diseño.

Es reconocida como la velocidad de proyecto que se mantiene a lo largo de su recorrido, también puede ser definida en tramos dependiendo de las condiciones físicas, para de esta manera transitar de manera cómoda y segura.

De esta manera, tanto el alineamiento horizontal, vertical y el diseño transversal dependen de la velocidad de diseño, al proyectar la vía es recomendable mantener constante la velocidad de diseño durante la mayor longitud posible, en caso de no ser viable, se sugiere tramos mínimos de 2 kilómetros para una misma velocidad de diseño.

Parámetros a definir la velocidad de diseño:

- 1) Categoría de la vía
- 2) Volumen de tráfico
- 3) Condiciones topográficas

4) Recursos económicos

Radios mínimos.

Los radios mínimos se aplican en situaciones extremas cuando no se puede aplicar radios mayores.

Para calcular el radio mínimo, se aplica la siguiente fórmula.

$$R_{min} = \frac{{V_e}^2}{127(e_{max} + f_{max})}$$

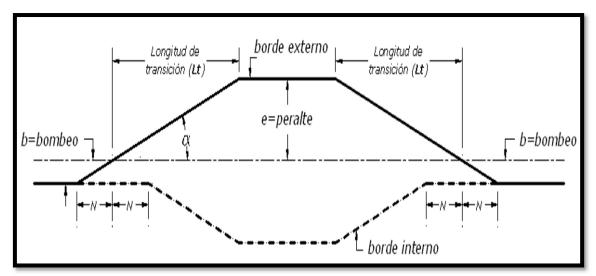
Donde:

R_{min}= Radio mínimo de curva (metros)
 e= Peralte (fracción decimal)
 f_{max}= Factor de fricción lateral
 V_e= Velocidad de Diseño (km/h).

· Peralte.

Es la inclinación transversal de la calzada en tramos curvos donde se dan los cambios de dirección. Su principal función es contrarrestar las fuerzas centrífuga evitando que los automóviles se salgan de los tramos curvos.

Para realizar el cálculo del peralte, de aplica la siguiente fórmula:


$$e = \frac{{V_e}^2}{127R} - f$$

Donde:

e= Peralte máximo
f= Fricción lateral
V_e= Velocidad de diseño (km/h)
R= Radio de curva, en unidades métricas

Transición de peralte.

La transición de peralte es un proceso por el cual una sección transversal pasa de un bombeo normal al peralte máximo originado por la curva. Este cambio se lo realiza gradualmente a lo largo de la vía.

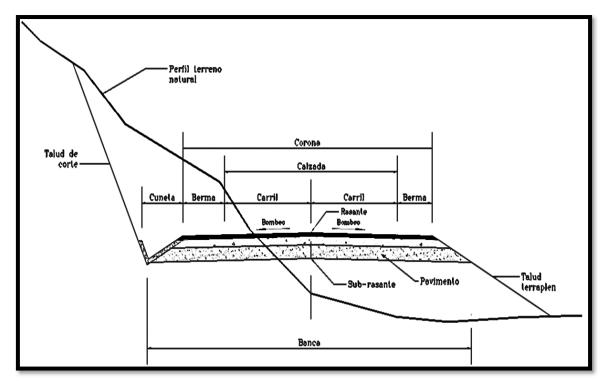
Ilustración 7: Transición de Peralte. **Fuente:** (MTOP, 2003)

Alineamiento vertical.

También denominada alineamiento en perfil, conformado por tramos rectos que representa un cambio de pendiente enlazadas entre sí por curvas verticales, la longitud y pendiente de estas curvas dependen básicamente del relieve del lugar.

Para determinar las longitudes, estas dependerán de dos tipos de curvas verticales cóncavas o convexas, si existen longitudes mínimas puede existir una diferencia gradual entre la tangente de entrada y la tangente de salida sin que haya cambios imprevistos, brindando seguridad y conformidad (Cárdenas, 2013).

• Sección transversal.


Es el corte vertical perpendicular al eje del alineamiento horizontal, el cual permite observar y definir las dimensiones y posiciones de los elementos que conforman la carretera y la relación que tiene con el terreno natural (Agudelo, 2002).

Elementos de la sección transversal.

Los elementos que conforman la sección transversal son los siguientes.:

a) Banca: ancho horizontal perpendicular al eje, destinado a la circulación de peatones, ubicada a un nivel superior a la calzada.

- b) Bermas: anchos longitudinales contiguos de ambos lados de la calzada, destinadas a la circulación de automóviles en condiciones especiales.
- c) Bordillos: elementos construidos sobre los bordes de la calzada para evitar que el agua erosione el terraplén o talud.
- d) Calzada: se representa como el ancho de la corona, tiene como finalidad la circulación de los vehículos establecidos por 2 o más carriles.
- e) Corona: se conoce como el ancho de bordes externos de bermas.
- f) Cuneta: canales abiertos longitudinales ubicados a los lados de la corona, que tienen como función recoger los líquidos superficiales para una correcta evacuación.
- g) Defensas: dispositivos de seguridad ubicados a los extremos de la calzada, que sirven para evitar que los usuarios se salgan de la carretera.
- h) Derecho de vía: se define como ancho de una franja de terreno, el cual está reservada para la construcción de futuras ampliaciones de la carretera o también para el mantenimientos de la misma.
- rasante: está definida por un punto indicando la elevación de la superficie del acabado final de la vía.
- j) Separador: se representa como los espacios conocidos como áreas verdes o de concreto, acomodadas entre las calzadas y de forma paralela a la misma.
- k) Taludes: inclinación de la superficie en los cortes de los terraplenes (MTOP, 2003).

Ilustración 8: Elementos de la Sección Transversal. **Fuente:** (AGUDELO, 2002)

2.3 Definición de Términos Básicos

Aforo: Capacidad máxima de persona o cosas que caben un área o lugar.(significados.com, 2016).

Apisonadas: Apretar o allanar la tierra, grava, etc., por medio de rodillos pesados o por una apisonadora. (RAE, 2020).

Calzada: parte de la carretera que se encuentra entre dos veredas dispuesta para circulación de vehículos.(RAE, 2020).

Consistencia: Es la calidad del material que resiste sin romperse ni deformarse fácilmente.(Oxford languages, 2020).

Cuantificar: Expresar numéricamente una magnitud de la realidad.(RAE, 2020).

Incaicas: Perteneciente o relativo a los incas.(RAE, 2020).

Jerarquía: Orden de elementos de acuerdo a su valor, puede ser de mayor a menor. (definicion.de.com, 2009).

Macadán: Construcción de superficie de rodadura utilizando 3 capas de diferentes

tamaños de agregados, teniendo su origen por el ingeniero que lo invento, ing. John McAdam.(Etimologia.dechile, 2021).

Rehabilitaciones: Métodos que tiene como finalidad recuperar una función que se ha producido por causas de la naturaleza o provocados por el ser humando. (Oxford languages, 2020).

Relieve: Conjunto de formas que resaltan sobre un plano o superficie. (significados.com, 2019).

Serviciabilidad: Indicador que representa el nivel de comodidad y seguridad que el pavimento le proporcionara al usuario.(ingenierocivilinfo.com, 2010).

CAPÍTULO III

Marco Metodológico

3.1 Tipo de Estudio

El tipo de estudio para el presente trabajo de titulación se encuentra dentro del método de investigación **cuantitativo**, debido a que el procedimiento que se desarrolla se realiza por medio de datos numéricos, lo siguientes datos nos proporciona las características del tráfico que circula por la carretera, de la misma manera se toma muestras de suelo, el cual ayuda a interpretar las características del suelo, por consiguiente se podrá conocer si el suelo cumplen con los parámetros para soportar las cargas de los automotores al transitar por la vía a desarrollarse. Por lo tanto, lo datos recolectados para el estudio de la carretera se deben caracterizar por su fiabilidad y validez, el cual brinda la información necesaria para cumplir los aspectos técnicos de la vía Santa Rosa – Puerto Jelí.

En el presente capítulo, se habla sobre los métodos de cálculos y fórmulas que fueron propuestas en el capítulo 2, los cuales sirven para el respectivo diseño y buen funcionamiento de la carretera, partiendo desde el estudio del tráfico para la determinación y clasificación de la vía actual y proyectada a 20 años, seguido de los estudios del suelo natural, verificando las características físicas para garantizar si el suelo es apto para brindar una excelente serviciabilidad a los usuarios que tomarán uso de la misma, y por último, verificar el diseño geométrico certificando si es el más óptimo para la vía.

Al culminar con todos los cálculos respectivos en el proyecto de titulación, se verificará si cumplen con todos los procedimientos adecuados que realizo la consultora al momento de ejecutar la obra de la infraestructura vial.

3.2 Población, Muestra y Muestreo

Este trabajo de titulación toma como **población** las carreteras del Ecuador, debido que el país existe grandes infraestructuras viales, las cuales brindan un servicio a los transportistas dándoles seguridad y comodidad al hacer uso de la misma, por lo expuesto se selecciona la carretera Santa Rosa – Puerto Jelí como una **muestra** intencional al ser el objeto de estudio.

No se realiza **muestreo**, se considera directamente la vía en estudio.

3.3 Métodos, Técnicas e Instrumentos

El método que se aplicará para la presente tesis es el **Deductivo**, por lo que se determinarán las características de un fenómeno en estudio por deducción o resultados que estén fundamentadas por las normas de diseño y construcción.

La técnica por utilizar en la investigación es la observación, porque se debe realizar el conteo vehicular diario de la vía Santa Rosa – Puerto Jelí y así obtener un documento de campo en el que se detallan los vehículos que circulan en esta vía.

Como **instrumentos** se tiene lo siguiente:

- Formato de conteo manual vehicular.
- Estudios del Tráfico.
- Resultados de ensayo de laboratorio.

3.4 Plan de Procesamiento y Análisis

Procesamiento

El sitio de interés, en este caso la vía Santa Rosa – Puerto Jelí, se debe ubicar un lugar en específico para la estación de conteo vehicular diario, que se llevó a cabo 4 días, utilizando un periodo de tiempo de 15 minutos, el cual se realizó el jueves 10 de junio del 2021 y se culminó el domingo 13 de junio del 2021, de esta manera clasificando los vehículos por sus características y dimensiones.

Una vez teniendo la composición vehicular, se procederá a realizar los cálculos de tráfico promedio diario anual (TPDA) proyectado a 20 años, para de esta manera, por medio de las normas de diseño geométrico propuestos por la MTOP 2003 poder clasificar la carretera de estudio.

Al obtener la clasificación de la vía, se debe continuar con poseer todos los parámetros necesarios para realizar un correcto cálculo sobre los ejes equivalentes, este cálculo es fundamental, de modo que servirá para el diseño del pavimento flexible.

Para el diseño del pavimento flexible, se tendrá en cuenta todas las medidas recomendadas por la norma AASHTO 93, el cual permite utilizar nomogramas para obtener valores que permitirán diseñar los espesores de los elementos que conforman los pavimentos flexibles. Por consiguiente, se procederá utilizar un programa en el que proporciona valores primordiales llamados **números estructurales**, dichas cifras servirán para el diseño definitivo de cada una de las capas del pavimento flexible.

A partir del diseño propuesto del pavimento flexible, se continua con el diseño geométrico de la vía, en este caso, los autores del presente trabajo de titulación proceden a analizar el diseño geométrico, para brindar garantías sobre si el diseño propuesto está bien elaborado, desarrollado y acogiendo las normas propuestas por la MTOP 2003.

Y, por último, se procederá a examinar los cronogramas valorados propuestos por la consultora que se encuentran definidos y organizados de manera correcta acogiendo todas las etapas establecidas para la reconstrucción de una carretera. Cabe recalcar que en el presente trabajo de titulación no se hablaran de precios, solo de los rubros necesarios para una construcción vial.

• Análisis de datos

Para analizar los datos, se utilizarán técnicas estadísticas como el conteo, tablas para organizar datos y gráficas para mostrar los datos. Al realizar el conteo vehicular diario por 4 días, se genera un documento de Excel clasificando los vehículos según sus características y dimensiones, este documento nos ayuda a determinar el tráfico promedio diario anual (TPDA), para posteriormente ser proyectado para una vida útil de 20 años, el cual nos será útil para determinar la clasificación y tipo de carretera según la tablas del MTOP, con el documento generado determinaremos los ejes equivalentes de los vehículos, que nos permitirá establecer el diseño de la estructura del pavimento.

CAPÍTULO IV

Desarrollo del Tema

4.1 Visita de Campo

Previo a la realización de toma de datos, se efectúo una visita en el lugar donde se va a estudiar la vía, con el fin de ubicar un lugar estratégico para la estación de conteo, mismo que nos servirá para el estudio de tráfico, de la misma manera, se realizó una inspección por toda la vía para ubicar las zonas en donde se realizará la toma de muestras de suelos (calicatas) de lado izquierdo y derecho de la carretera a diferentes profundidades, sin que afecten el trabajo realizado por la consultora.

Mediante esta recolección de datos realizados en el lugar de estudio, estos serán necesarios para el desarrollo del presente trabajo de titulación.

4.2 Estudio de Tráfico

Al empezar nuestro proyecto de tesis, arrancamos con el estudio de tráfico para determinar el comportamiento del transporte en la vía, de esta manera se obtendrá el conocimiento de la demanda vehicular actual que existe en la ruta. Por lo tanto, estos estudios se los elabora efectuando una estadística real para realizar de manera precisa el diseño de un pavimento adecuado, el cual, cumpla con la demanda vehicular y soporte las cargas de los diferentes tipos de vehículos que circula por la misma.

Una vez obtenidos en campo los datos sobre el conteo vehicular, se procede a establecer los debidos cálculos sobre el tráfico actual y futuro en oficina.

4.3 Análisis de Tráfico Vehicular

Para realizar el análisis de conteo tráfico vehicular, se procede a emplear la metodología del conteo manual, utilizando las ubicaciones estratégicas en las que nos permitirá obtener por medio de la observación un registro de los vehículos que hacen uso de la misma, para de esta manera determinar el volumen de tráfico de la vía, y continuamente realizar los cálculos del tráfico actual y futuro.

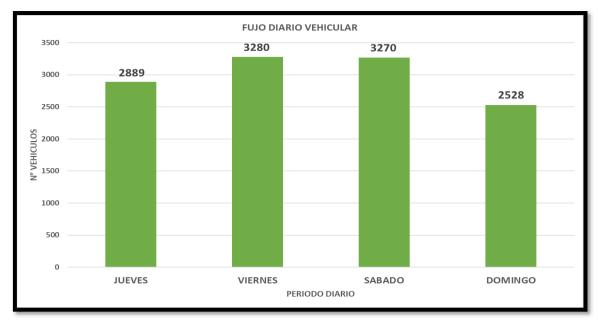
Por ende, se llevó a cabo a utilizar un formato de conteo manual que se muestra en el **Anexo 3**, siendo de gran importancia para la determinación sobre la composición y clasificación del tráfico, de esta manera se puede apreciar las pesos y dimensiones de los automotores, acatando las disposiciones propuestas por las normas del Ministerio de Transporte y Obras Públicas (MTOP). De esta manera, obteniendo información indispensable para el desarrollo del diseño geométrico de la vía.

4.3.1 Tipos de Vehículos.

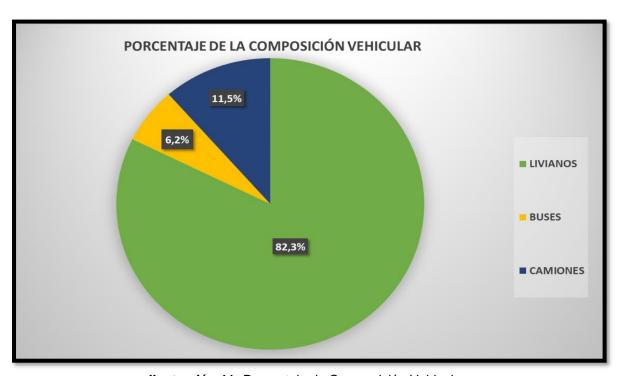
Los vehículos observados que transitan a diario por la vía, son livianos, buses y camiones, de los cuales, este último vehículo se deriva según sus ejes conceptuados como: simples, tándem y trídem, como se muestra a continuación.

LIVIANOS BUSES			CAMIONES								
Automóvil	Camioneta	Buseta	Bus	2DA	2DB	3A	3S1	2\$1	2S2	3\$2	3S3
									Q		

Ilustración 9: Tipos de Vehículos Considerados Conteo Manual. **Elaborado por:** Kevin Chavez – Alex Pallo


4.3.2 Conteo de Tráfico.

A continuación, se detalla mediante tabla la magnitud de los vehículos que circulan en el tramo de vía Santa Rosa – Puerto Jelí, considerando su clasificación vehicular por configuración de vehículos, el conteo manual se realizó al inicio de la vía en estudio. en dos direcciones.


Tabla 8: Conteo Vehicular Realizado Durante 4 Días.

		LIVIA	ANOS	BUSES		CAMIONES								
	DIA DE LA	Automóvil	Camioneta	Buseta	Bus	2DA	2DB	3A	3\$1	2\$1	2\$2	3\$2	3\$3	
FECHA	SEMANA		4						Q \$55,000	495	THE STATE OF THE S	10 B	No.	TOTAL
10/06/2021	JUEVES	1412	916	166	16	221	103	38	0	0	7	7	3	2889
11/06/2021	VIERNES	1545	1111	166	20	207	126	92	0	0	0	2	11	3280
12/06/2021	SABADO	1628	1131	147	43	175	97	38	0	0	0	5	60	3270
13/06/2021	DOMINGO	1247	862	161	24	177	53	0	0	0	0	2	2	2528
TO'	TAL	5832	4020	640	103	780	379	168	0	0	7	16	22	11967

Elaborado por: Kevin Chavez – Alex Pallo

Ilustración 10: Análisis Estadístico de Aforo Vehicular por Día. **Elaborado por:** Kevin Chavez – Alex Pallo

Ilustración 11: Porcentaje de Composición Vehicular. **Elaborado por:** Kevin Chavez – Alex Pallo

4.3.3 Tráfico Promedio Diario Semanal (TPDS).

Una vez realizado la composición vehicular, se procede a obtener el TPDS, el cual se obtiene como resultado el valor promedio de vehículos que circulan semanalmente.

El porcentaje TPDS será un valor que representará la composición del tráfico en entre los vehículos detallados.

$$TPDS = \frac{5}{7}\Sigma\left(\frac{T_n}{m}\right) + \frac{2}{7}\Sigma\left(\frac{T_e}{n}\right)$$

Donde:

TPDS: Tráfico promedio diario semanal.

T_n: Días normales. T_e: Días especiales.

m: Número de días normales de conteo.n: Número de días especiales de conteo.

Cabe recalcar que la MTOP establece que, el conteo mínimo para realizar un Tráfico Promedio Diario puede ser de 4 días a la semana, considerando dos días normales (lunes-viernes) y dos especiales (sábados y domingos).

Por lo tanto, para el cálculo siguiente se tomaron los días jueves y viernes como días normales y sábado y domingo como días especiales. Remplazando esta información en la siguiente fórmula, obtenemos lo siguiente.

$$TPDS = \frac{5}{7} \left(\frac{2889 + 3280}{2} \right) + \frac{2}{7} \left(\frac{3270 + 2528}{2} \right)$$

$$TPDS = 3037 \frac{veh.mixtos}{diarios}$$
 ambos sentidos

Tabla 9: Porcentaje de Composición Vehicular por TPDS.

TPDS (composición vehicular)								
TIPO DE VEHICULO	VEHICULOS	%						
LIVIANO	2476	81,5%						
BUSES	186	6,1%						
2DA	204	6,7%						
2DB	104	3,4%						
3A	52	1,7%						
3S1	0	0,0%						
2S1	0	0,0%						
2S2	3	0,1%						
3S2	5	0,2%						
3S3	7	0,2%						
TOTAL	3037	100,0%						

Elaborado por: Kevin Chavez – Alex Pallo

Mediante el cuadro de resultados TPDS (composición vehicular) podemos observar que, en la vía Santa Rosa – Puerto Jelí circularan 3037 Vehículos /días para ambos sentidos.

4.3.4 Tráfico Promedio Diario Anual (T.P.D.A).

El TPDA, se define como tráfico promedio de los vehículos que circulan diariamente por un año en la vía en estudio, complementándose con las normas de la MTOP e integrando la información propuesta por el autor Cal & Mayor con su libro Ingeniería de Tránsito Fundamentos y Aplicaciones. Por lo tanto, para conocer el valor del TPDA ACTUAL se debe realizar el producto por los siguientes factores nombrados a continuación en la siguiente fórmula.

$$TPDA_{ACTUAL} = TPDS \pm A$$

Donde:

TPDA_{ACTUAL}: Tráfico Promedio Diario Anual **TPDS**: Tráfico Promedio Diario Semanal **A**: Máxima Diferencia entre TPDA y TPDS

El valor de A sumado o restado del TPDS, define el intervalo de confianza en el que se encuentra el TPDA. Para determinar el nivel de confiabilidad, el valor de A es:

$$A = K * E$$

Donde:

K: Factor de confiabilidad, (correspondiente al nivel de confiabilidad para la tipología de la vía)

E: Error estándar de la media.

Según Cal & Mayor, el error de estar media (E), se lo puede describir de la siguiente manera:

$$E = \sigma$$

Donde:

σ: Estimador de desviación estándar poblacional.

De tal manera, para poder determinar el valor estimado de la desviación estándar poblacional, se utiliza la siguiente ecuación:

$$\sigma = \frac{S}{\sqrt{n}} \left(\sqrt{\frac{N-n}{N-1}} \right)$$

Donde:

S: Desviación estándar de la muestra o desviación estándar de la distribución de los volúmenes de tránsito diario.

n: Tamaño de muestra en número de días del aforo

N: Tamaño de la población en número de días del año

Por lo tanto, la desviación estándar S, se calcula con la siguiente ecuación:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (TD_i - TPDS)^2}{n-1}}$$

Donde:

 TD_i : Volumen de tránsito del día.

TPDS: Tráfico Promedio Diario Semanal.

Para obtener el Factor de confiabilidad utilizaremos la siguiente tabla:

Tabla 10: Coeficientes de Confiabilidad (K).

Constante K	Nivel de Confiabilidad (%)
1,00	68,30
1,5	89,60
1,64	90,00
1,96	95,00
2	95,50
2,5	98,80
2,58	99,00
3	99,70

Fuente: (CAL&MAYOR, 2018)

Para obtener el coeficiente K, utilizaremos un valor de confiabilidad del 85%, por lo que, interpolando tenemos como resultado **K= 1.39.**

A continuación, detallamos en la siguiente tabla el TPDA ACTUAL de cada uno de los vehículos:

Tabla 11: Cálculo del TPDA actual por Composición Vehicular.

	TPDAactual (COMPOSICION VEHICULAR)										
	TPDS	K	E	TPDA	%						
LIVIANO	2476		150,59	2686	80,5%						
BUSES	186		10,42	201	6,0%						
2DA	204		11,30	220	6,6%						
2DB	104		15,19	126	3,8%						
3A	52	1,390	18,84	79	2,4%						
3S1	0	1,000	0	0	0,0%						
2S1	0		0	0	0,0%						
2S2	3		1,74	6	0,2%						
3S2	5		1,22	7	0,2%						
3S3	7		2,01	10	0,3%						
TOTAL	3037		TPDAactual	3337	100%						

Elaborado por: Kevin Chavez - Alex Pallo

• Tráfico Asignado

Se define como la suma de TPDA ACTUAL, el tráfico Desarrollado (TD) y el tráfico generado (TG), estos dos últimos volúmenes de tráfico son un incremento del TPDA actual debido a las mejoras de la carretera o predicciones futuras de hasta 20 años. En el presente proyecto se considerará: el tráfico generado como el 25% del TPDA ACTUAL

Y el tráfico desarrollado como el 5% del TPDA ACTUAL.

$$TPDA_{ASIGNADO} = TPDA_{ACTUAL} + TG + TD$$

a) Tráfico generado

$$TG = 25\% TPDA_{ACTUAL}$$

$$TG = 0.25 * 3337 = 836 \frac{veh.mixtos}{diarios}$$

b) Tráfico desarrollado.

$$TD = 5\% TPDA_{ACTUAL}$$

$$TD = 0.05 * 3337 = 168 \frac{veh.mixtos}{diarios}$$

Entonces el tráfico asignado será:

$$TPDA_{ASIGNADO} = TPDA_{ACTUAL} + TG + TD$$

$$TPDA_{ASIGNADO} = 3337 + 836 + 168$$

$$TPDA_{ASIGNADO} = 4341 \frac{veh.\ mixtos}{diarios}$$

Tráfico asignado por vehículos equivalentes.

Una vez obtenido el tráfico asignado, se procede a determinar el TPDA en función de vehículos livianos equivalentes, asignando un valor de 1 para los vehículos livianos, 2 para buses, y 2.4 para vehículos pesados. Posteriormente se detallará en una tabla el TPDA en términos de vehículos livianos equivalente.

Tabla 12: TPDA Asignado en Vehículos Livianos Equivalentes.

		LIVIA	INOS	BU	SES				CAMI	ONES				
1000000		Automóvil	Camioneta	Buseta	Bus	2DA	2DB	3A	351	251	252	352	353	1000000
FECHA	DIA DE LA SEMANA		1	0-0					() ()		O O	8	NAME OF THE PARTY	TOTAL
	TPDA ASIGNADO	2058	1436	221	42	286	164	103	0	0	8	10	13	4341
1	TPDA ASIGNADO	34	94	263			584						4341	
FACTORES DE	EQUIVALENCIA A VEHICULOS LIVIANOS		1		2					2,4				
A CONTRACTOR OF THE PARTY OF	TPDA ASIGNADO (VEHICULOS LIVIANOS EQUIVALENTES)		1436	442	84	687	394	248	0	0	20	24	32	5425
TPDA ASIGNADO (VEHICULOS LIVIANOS EQUIVALENTES)		34	94	53	26				14	05				5425

Elaborado por: Kevin Chavez - Alex Pallo.

Como se muestra en la **tabla 12**, se determina el volumen de tráfico existente en la vía Santa Rosa – Puerto Jelí con un TPDA asignado de **4341** $\frac{\text{veh.mixtos}}{\text{diarios}}$ en ambos sentidos y un TPDA asignado (vehículos livianos equivalentes) de **5425** $\frac{\text{vehiculos}}{\text{diarios}}$ en ambos sentidos en el año 2021.

Tráfico Futuro

Es la proyección del tráfico asignado (vehículos livianos equivalentes), el número de años de vida útil se da debido a la importancia de la carretera, en este estudio tendrá 20 años de vida útil. Se la determina mediante la siguiente expresión:

$$Tf = T_{asignado}(1+r)^n$$

Donde:

Tf= tráfico futuro.

r= tasa de crecimiento vehicular.

n= vida útil, expresado en años.

Las tasas de crecimiento anuales las obtendremos de las normas del MTOP. El mismo que se presenta a continuación.

Tabla 13 Tasa de Crecimiento.

EL ORO	TASA DE CRECIMIENTO %							
ELORO	LIVIANO	BUS	CAMION					
2020-2024	3,75	1,99	2,24					
2025-2029	3,37	1,8	2,22					
2030-2034	3,06	1,63	2,02					

Fuente: (MTOP, 2003)

Después de establecer los valores se procede a proyectar el tráfico asignado, utilizando la fórmula antes mencionada:

$$Tf = T_{asignado}(1+r)^n$$

Los valores que se mostrarán en la siguiente tabla, serán sobre los vehículos proyectados a 20 años. Los cuales se podrá apreciar de mejor manera en el **ANEXO** 6.

Tabla 14: Resumen del Tráfico Futuro, Proyectado a 20 Años.

400		TIP	TOTAL		
AÑO	n	LIVIANOS	BUSES	PESADOS	TOTAL
2021	0	3494	526	1405	5425
2022	1	3626	537	1437	5600
2023	2	3761	548	1469	5778
2024	3	3902	559	1502	5963
2025	4	4034	570	1536	6140
2026	5	4170	580	1570	6320
2027	6	4310	590	1605	6505
2028	7	4456	601	1640	6697
2029	8	4606	612	1677	6895
2030	9	4593	622	1715	6930
2031	10	4733	633	1746	7112
2032	11	4878	643	1781	7302
2033	12	5027	653	1817	7497
2034	13	5181	664	1854	7699
2035	14	5340	675	1891	7906
2036	15	5503	686	1929	8118
2037	16	5672	697	1968	8337
2038	17	5845	708	2008	8561
2039	18	6024	720	2049	8793
2040	19	6208	732	2090	9030
2041	20	6398	744	2132	9274

Elaborado por: Kevin Chavez – Alex Pallo

• Clasificación de la Vía.

Obteniendo el resultado del tráfico futuro proyectado a 20 años con un valor de **9274 vehículos livianos equivalentes/diario para ambos sentido**, se logró

determinar la función y clase de la carretera con la que se diseñará según los establecidos por la MTOP 2003, por consiguiente, la función de la vía será **corredor arterial**, con descripción de autopista o vía importante.

Tabla 15: Clasificación Funcional de una vía.

	FUNCIÓN		CLASE DE CARRETERA	TRÁFICO PROYECTADO (TPDA)
& v.			R-IoR-II	Más de 8000 vehículos
CORRECTEDAR	,		I	De 3000 a 8000 vehículos
CO. 46.	cotectora cotectora		II	De 1000 a 3000 vehículos
	cole		III	De 300 a 1000 vehículos
	,	VECINAL	IV	De 100 a 300 vehículos
		VECINAL	V	Menos de 100 vehículos

El TPDA pertinente es el volumen de tráfico promedio diario anual proyectado a 15 o 20 años. Cuando el pronóstico de tráfico para el año sobrepasa los 7000 vehículos debe considerarse la posibilidad de construir una autopista. Para efectuar el diseño definitivo se debe trabajar con el tráfico en vehículos equivalentes.

Fuente: (MTOP, 2003) Elaborado por: Kevin Chavez – Alex Pallo

Nota: De esta manera se afirma que, para la ampliación de la vía Santa Rosa – Puerto Jelí debe ser una vía de dos calzadas, absoluta, terreno llano. Obteniendo un tráfico proyectado mayor a 8000 vehículos.

4.3.5 Nivel de Servicio Actual.

Para el nivel de servicio actual de la vía Santa Rosa – Puerto Jelí, que consta de 2 carriles con un TPDA actual de 3337 vehículos mixtos diarios, se determina que es una vía colectora de clase I. Al realizar el conteo de tráfico se establece los volúmenes horarios máximos durante los 4 días de conteo, teniendo como resultado que el sábado posee la máxima demanda vehicular horaria, como se aprecia a continuación.

Tabla 16: Volumen de Máxima Demanda Vehicular Horaria.

ESTACION					acion 1:										
DIRECCION	V:			SANTA ROS	A - PUERTO JE	LI									
			LIVIANOS	s	BUS	SES				CAI	MIONES				
		Moto		Camioneta	Buseta	Bus	2DA	2DB	3A	351	251	252	352	353	
FECHA	HORA			- 6 To		-00	aL.		4	Q-0000=0	650720	Q.	\$ 100 mm	\$000-000	TOTAL
JUEVES 10/06/2021	07h00 08h00	61	62	27	9	1	7	2	0	0	0	1	1	0	171
VIERNES 11/06/2021	17h00 18h00	26	61	56	6	1	13	1	3	0	0	0	0	0	167
SABADO 12/06/2021	18h00 19h00	49	79	64	5	4	5	3	0	0	0	0	0	0	209
DOMINGO 13/06/2021	17h00 18h00	24	54	57	4	3	8	3	0	0	0	0	0	0	153
VOLUMEN HORARIO DE TRÁFICO MÁXIMOS															
ESTACION					cion 1:										
DIRECCION	l:			PUERTO JEI	LI - SANTA ROS	SA									
			LIVIANOS		BUS	EFE				CA	MIONES				
		Moto		Camioneta	Buseta	Bus	2DA	2DB	3A	351	251	252	352	353	
FECHA	HORA	moto		1		- COURTED	aL.		A		a	۵		图写	TOTAL
HIELEC TOTOCIOCO								-0	*-@izz	404200,0-	CONTRACTOR	€@##Attenchiller	@C0932=- 199	@000	
JUEVES 10/06/2021	15h00 16h00	44	59	45	7	1	8	3	0	0	0 c0m01.em0n	0	2	1	170
VIERNES 11/06/2021	15h00 16h00 15h00 16h00	44 42	59 78	45 49	7	1 0									170 207
							8	3	0	0	0	0	2	1	
VIERNES 11/06/2021	15h00 16h00	42	78	49	8	0	8	3	0	0	0	0	2	1	207
VIERNES 11/06/2021 SABADO 12/06/2021	15h00 16h00 18h00 19h00	42 45	78 88 41	49 48 46	8 5 6	0 3 2	8 16 6	3 3 7	0 10 0	0 0 0	0 0 0	0 0	2 0	1 1 0	207
VIERNES 11/06/2021 SABADO 12/06/2021	15h00 16h00 18h00 19h00	42 45 26	78 88 41 LIVIANOS	49 48 46	8 5 6	0 3 2	8 16 6	3 3 7 4	0 10 0	0 0 0	0 0 0 0	0 0 0 0	2 0 0	1 1 0	207
VIERNES 11/06/2021 SABADO 12/06/2021 DOMINGO 13/06/2021	15h00 16h00 18h00 19h00 17h00 18h00	42 45 26	78 88 41 LIVIANOS	49 48 46	8 5 6 BUS Buseta	0 3 2	8 16 6	3 3 7	0 10 0	0 0 0	0 0 0	0 0	2 0	1 1 0	207 202 131
VIERNES 11/06/2021 SABADO 12/06/2021	15h00 16h00 18h00 19h00	42 45 26	78 88 41 LIVIANOS	49 48 46	8 5 6	0 3 2	8 16 6	3 3 7 4	0 10 0	0 0 0	0 0 0 0	0 0 0 0	2 0 0	1 1 0	207
VIERNES 11/06/2021 SABADO 12/06/2021 DOMINGO 13/06/2021	15h00 16h00 18h00 19h00 17h00 18h00	42 45 26	78 88 41 LIVIANOS Automóvil	49 48 46 Camioneta	8 5 6 BUS Buseta	0 3 2 SES Bus	8 16 6 6	3 3 7 4	0 10 0 0	0 0 0 0	0 0 0 0	0 0 0 0	2 0 0 0	1 1 0 0	207 202 131

En consecuencia, el VHMH = 411 vehículos/ hora en ambos sentidos, además el volumen referido a un periodo de 15 min es de Q máx.=116 vehículos.

• Factor de hora pico (FHP).

El factor de hora pico, se lo determina con siguiente ecuación:

$$FHP\ O\ FHMD = \frac{VHMD}{N*Q_{m\acute{a}x}} = \frac{411}{4*116}$$

$$FHP O FHMD = 0.89$$

• Cálculo de nivel de servicio.

DATOS	
ANCHO DE CARRIL	2.8 m
ANCHO DE BERMA	0
TIPO DE TERRENO	LLANO
VELOCIDAD DE DISEÑO	100 km/ h
LONGITUD DEL TRAMO	3.5 km
VOLUMEN BIDIRECCIONAL	411 Veh/h
% DISTRIBUCIÓN DE VOLUMEN POR CARRIL	50%
FACTOR DE HORA PICO	0.89
% BUSES Y CAMIONES	9%
%VEHICULOS RECREACIONALES	0
% ZONAS DE NO-REBASE	60%
PUNTOS DE ACCESO POR Km	0

a) Velocidad media de viaje (VMV).

1) Velocidad de flujo libre (VFL).

$$VFL = VBFL - fce - fa$$

Donde:

VFL= Velocidad de flujo libre. (Velocidad de Diseño)

VBFL= Velocidad base de flujo libre.

fce= ajuste de ancho de carril y ancho de berma.

fa= ajuste por puntos de acceso.

Tabla DC.3: Ajuste por densidad de punto de acceso

	Reduccion de la velocidad
Puntos de acceso por km	flujo libre (km/h)
0	0
6	4
12	8
19	12
24 o mas	16

Fe:10.3(según tabla)

Tabla DC.10: Factores de ajuste (fLS) para anchos de carril y berma

Analas da	Factor de reducción de la VFL (km/h)								
Ancho de carril (m)	Ancho de berma (m)								
Carrii (m)	≥ 0 < 0.60	≥ 0.60 < 1.20	≥ 1.20 < 1.80	≥ 1.80					
2.70 < 3.00	10,3	7,7	5,6	3,5					
≥ 3.00 < 3.30	8,5	5,9	3,8	1,7					
≥ 3.30 < 3.65	7,5	4,9	2,8	0,7					
≥ 3.65	6,8	4,2	2,1	0,0					

Fa:0 (según tabla)

Por lo tanto, reemplazando los valores en la ecuación antes mencionada se tiene una velocidad de flujo libre de:

b) Determinación de demanda de tasa de flujo (Vp).

Para la determinación de Vp se utiliza la siguiente fórmula.

$$V_p = \frac{V}{FHP * f_G * f_{HV}}$$

Donde:

 V_p : Tasa de flujo equivalente para periodo pico de 15 min.

V: Demanda de volumen para una hora pico completa.

FHP: Factor de hora pico.

 f_G : Factor de ajuste por pendiente.

 f_{HV} : Factor de ajuste por vehículos pesados.

El factor de ajuste por vehículos pesados se determina mediante la siguiente fórmula:

$$F_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

Donde:

 P_T : Proporción de vehículos pesados en el tráfico.

 E_T : Proporción de vehículos recreacionales en el tráfico.

 E_T y E_R : Equivalente del número de vehículos (vehículos pesados y recreacionales).

Por lo tanto, se obtiene lo siguiente:

$$FHV = \frac{1}{1+0.09(1.7-1)+0} = 0.9407$$

Obteniendo los parámetros necesarios, se procede a calcular la tasa de flujo Vp:

$$V_p = \frac{V}{FHP * f_G * f_{HV}} = \frac{411 vehiculos}{0.89 * 1 * 0.9407} = 491 \frac{veh}{h}$$
 ambos carriles

Determinación de la velocidad media de viaje:

$$VMV = VFL - 0.0125Vp - fna$$

 $VMV = 89.7 - 0.0125 * 491 - 4.7043 = 78.9 km/h$

c) Cálculo de porcentaje de demora.

Para determinar el porcentaje de tiempo de demora, primero se determina el porcentaje de tiempo de seguimiento en ambas direcciones utilizando la siguiente expresión:

$$TBD = 100(1 - e^{-0.000879 Vp})$$

Donde:

 V_p : Tasa de flujo equivalente por periodo pico de 15 min.

Cálculo de la tasa de flujo equivalente por periodo de 15 min

$$V_p = \frac{V}{FHP * f_G * f_{HV}} = \frac{400}{0.89 * 1 * 1} = 449 \frac{veh}{h}$$
 ambos carriles

$$F_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} = \frac{1}{1 + 0.09(1 - 1) + 0} = 1$$

Por lo tanto, se procede a calcular el porcentaje de tiempo de seguimiento.

$$\textit{TBD} = 100 (1 - e^{-0.000879*449}) = 32.6\%$$

Al obtener el tiempo de seguimiento, se procede a calcular el porcentaje de tiempo de demora:

$$PD = TBD + \frac{fd}{na}$$

Donde:

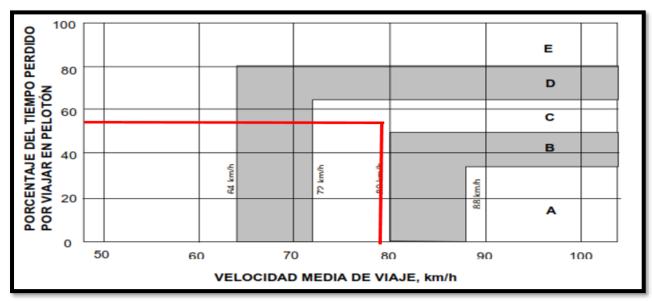

 $\frac{fd}{na}$: Efecto combinado de distribución direccional del tránsito y el porcentaje de zonas de no rebase.

Tabla DC.6: Ajuste (fd/np) para el efecto combinado de la distribución direccionada del tránsito, y del porcentaje de zonas de no rebase, sobre el porcentaje de tiempo que se ocupa en seguir a otro vehículo, sobre los tramos de dos sentidos							
Zonas de no rebase (%)	o	Incremento del porcentaje de tiempo que se ocupa en seguir a otro veh+iculo (%) 0 20 40 60 80 100					
Tasa de flujo en dos sentidos, vp (automòviles por hora)	Partición direccionada = 50/50						
≤ 200	0,0	10,1	17,2	20,2	21,0	21,8	
400	0,0	12,4	19,0	22,7	23,8	24,8	
600	0,0	11,2	16,0	18,7	19,7	20,5	
800	0,0	9,0	12,3	14,1	14,5	15,4	
1400	0,0	3,6	5,5	6,7	7,3	7,9	
2000	0,0	1,8	2,9	3,7	4,1	4,4	
2600	0,0	1,1	1,6	2,0	2,3	2,4	

Por lo que, interpolando con los datos de la presente tabla, se obtiene un valor de $\frac{fd}{ng} = 21.72$; por lo tanto, el porcentaje de tiempo de demora es:

$$PD = 32.6 + 21.72 = 54.32.$$

Para conocer el nivel de servicio actual de la vía de estudio, se debe conocer el porcentaje de tiempo de demora y la velocidad media de viaje. Estos datos serán ingresados al siguiente nomograma, el cual se muestra a continuación:

Ilustración 12: Nivel de Servicio Actual de la vía en Estudio **Elaborado por:** Kevin Chavez – Alex Pallo

Mediante el nomograma, se define que la vía de estudio actualmente cuenta con nivel de servicio **TIPO C**.

COMPROBACION

2 carriles 491 $\frac{veh}{h}$ ambos carriles < 3200 $\frac{veh}{h}$ ambos carriles

1 carril 246 $\frac{veh}{h}$ ambos carriles < 1700 $\frac{veh}{h}$ ambos carriles

4.3.6 Nivel de Servicio Futuro.

Para determinar el nivel de servicio futuro, se debe conocer el volumen horario máximo y consecutivamente la clasificación futura de la vía.

Cálculo de nivel de servicio.

DATOS				
ANCHO DE CARRIL	3.60 m			
ANCHO DE BERMA IZQUIERDO	1.20			
ANCHO DE BERMA DERECHO	1.50			
TIPO DE TERRENO	LLANO			
NUMERO DE CARRILES	4 (2 por sentidos)			
VELOCIDAD DE DISEÑO	100 km/ h			
LONGITUD DEL TRAMO	3.5 km			
VOLUMEN BIDIRECCIONAL	411 Veh/h			
OBSTRUCCION LATERAL	0 m			
% DISTRIBUCIÓN DE VOLUMEN POR CARRIL	50%			
FACTOR DE HORA PICO	0.89			
% BUSES Y CAMIONES	9%			
%VEHICULOS RECREACIONALES	0			
% ZONAS DE NO-REBASE	60%			
PUNTOS DE ACCESO POR Km	0			
CLASIFICACION DE LA VÍA (MULTICARRIL)	R-IoR-II			

a) Cálculo de la velocidad promedio de viaje (ATS).

1) Determinación de la velocidad de flujo libre.

$$VFL = VBFL - fce - fa - fac - fs$$

Donde:

VFL: Velocidad de flujo libre. (Velocidad de Diseño)

VBFL: Velocidad base de flujo libre.

fce: Ajuste de ancho de carril y ancho de berma.

fa: Ajuste por puntos de acceso.fac: Ajuste por obstrucción lateral.

fs: Factor de ajuste por tipo de separador.

$$VFL = 100 - 0 - 0 - 8.7 - 2.6 = 88.7 \text{ km/h}$$

b) Determinación de la demanda de tasa de flujo (Vp).

Para determinar la demanda de tasa de flujo se utiliza la siguiente fórmula:

$$V_p = \frac{V}{FHP * f_G * f_{HV}}$$

Donde:

 V_p : Tasa de flujo equivalente para periodo pico de 15 min.

V: Demanda de volumen para una hora pico completa.

FHP: Factor de hora pico.

 f_G : Factor de ajuste por pendiente.

 f_{HV} : Factor de ajuste por vehículos pesados.

El factor de ajuste por vehículos pesados se determina mediante la siguiente

fórmula:

$$F_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

Donde:

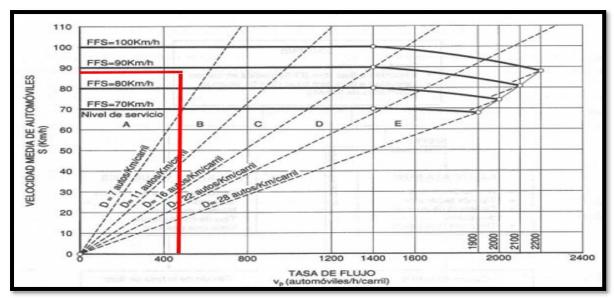
 P_T : Proporción de vehículos pesados en el tráfico.

E_T: Proporción de vehículos recreacionales en el tráfico.

 E_T y E_R : Equivalente del número de vehículos (vehículos pesados y recreacionales).

$$FHV = \frac{1}{1 + 0.09(1.5 - 1) + 0} = 0.996$$

Obteniendo los parámetros necesarios, se procede a calcular la tasa de flujo Vp:


$$V_p = \frac{V}{FHP * f_G * f_{HV}} = \frac{411 vehiculos}{0.89 * 1 * 0.996} = 464 \frac{veh}{h} ambos carriles$$

Determinación de la velocidad media de viaje:

Si **Vp** es menor que **1400** $\frac{veh}{h}$ *ambos carriles*, se estima la velocidad de flujo libre **(VFL)** como velocidad media de viaje, por lo tanto:

$$VFL = VMV = 88.7 \, km/h$$

Una vez obtenido los valores de la Velocidad de media viaje (VMV) y la tasa de flujo (Vp), dicho valores serán ingresados al siguiente nomograma para conocer el nivel de servicio.

Ilustración 13: Nivel de Servicio Futuro de la vía en Estudio. **Elaborado por:** Kevin Chavez – Alex Pallo

Por lo tanto, se observa que el nivel de servicio futuro de la via Santa Rosa – Puerto Jelí será de **TIPO A.**

4.4 Análisis del Suelo

Para el correcto diseño de la carpeta asfáltica, se realizó la toma de muestras de suelos por medio de calicatas a diferentes profundidades para ser llevadas al laboratorio ARNALDO RUFILLI de la Universidad de Guayaquil, con la finalidad de realizar los ensayos permitentes para obtener las características y propiedades del suelo, de esta manera conseguir la identificación del CBR de la subrasante donde se realizará el proyecto vial.

Para saber la caracterización de la subrasante, se procede a realizar las muestras de calicatas a 3 profundidades, las cuales fueron a: **0.50m**, **1.0m** y **1.5m**. esto se debe a que la carga generado por los ejes de los vehículos llega hasta una profundidad de **1.5m**, es decir, su diagrama de presiones hasta aquel fondo puede llegar a ser desapercibidas. Los resultados del análisis del suelo serán publicados en el **Anexo 10** hasta el **ANEXO 18**.

4.5 Diseño de Pavimento Flexible

El diseño y dimensionamiento del pavimento para el presente trabajo de titulación, se realizará utilizando las normas de la AASTHO GUIDE FOR DESIGN OF PAVIMENT STRUCTURES 1993. El cual utiliza diferentes variables de diseño tales como: El Tráfico, desviación estándar, confiabilidad, índice de serviciabilidad, entre otros, por ende, estas variables se definirán en este capítulo y posteriormente se agregarán los cálculos y resultados obtenidos con los datos conseguidos en la vía de estudio.

Como se mencionó anteriormente, esta normativa utiliza los parámetros de diseño como el tráfico, el cual servirá para determinar los ESAL'S, como es sabio, maneja una carga equivalente de 18 kips o 8.2 Ton o 18000 lb. Bajo un determinado tiempo, esto quiere decir que, en base a esta carga se pretende saber la cantidad de veces que dicho peso circulara por el periodo de diseño estimado de la vía.

La normativa AASTHO utiliza algunos factores para poder determinar la carga que circulara en la vía de nuestra tesis, los cuales son los siguiente:

- T.P.D.A.: Es el Tráfico Promedio Diario Anual obtenido por los diferentes vehículos.
- **Días.:** Valor numérico de días de 1 año.
- **FD.:** Factor Direccional, según la distribución vehicular por sentido.
- FC.: Factor Carril, según la distribución por el número de carriles.
- FG.: Tasa de crecimiento, indicara la proyección vehicular relacionado con el periodo de diseño de la vía.
- Fcamión.: Factor camión, es la sumatoria del número de aplicación equivalente de una carga por el tipo de eje del vehículo.

De la siguiente manera se podrá determinar las ESAL'S al utilizar la siguiente ecuación brindada por la AASTHO 93.

$$ESAL's = TPDA * DIAS * Fd * Fc * FG * Fcamion$$

DONDE:

T.P.D.A.: Tráfico Promedio Diario Anual Actual.

Días.: Se Considera Los 365 Días Del Año

Fd.: Factor Direccional

Fc.: Factor Carril

FG.: Factor De Proyección Vehicular.

FCAMIÓN.: Tasa De Crecimiento

Los medidas que se utilizaran para cada factor mencionado anteriormente son los siguientes:

Tabla 17: Factores de Distribución Direccional (Fd) y de Carril (Fc).

N° de calzadas	N° de sentidos	N° carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)
	1 sentido	1	1,00	1,00
	1 sentido	2	1,00	0,80
1 calzada	1 sentido	3	1,00	0,60
1 Calzada	1 sentido	4	1,00	0,50
	2 sentido	1	0,50	1,00
	2 sentido	2	0,50	0,80
2 calzadas con	2 sentido	1	0,50	1,00
separador central	2 sentido	2	0,50	0,90
	2 sentido	3	0,50	0,60
	2 sentido	4	0,50	0,50

Fuente: (AASTHO, 93) Elaborado por: Kevin Chavez – Alex Pallo

Teniendo en cuenta que los valores que utilizaremos para nuestro trabajo de titulación esta subrayado de color verde, debido que nuestra vía es de 2 calzadas, lo cual se toma en cuenta que son 4 carriles totales, distribuyéndose en 2 carriles de ida

y 2 carriles de venida, de esta manera obtenemos los factores correspondientes (Fd) y (Fc).

• FACTOR DE PROYECCION VEHICULAR.

Para determinar la tasa de crecimiento (FG) se utilizará la siguiente ecuación.

$$FG = \frac{(1+r)^n - 1}{r}$$

DONDE:

r: Tasa de crecimiento Vehicular.

n: Número de años de Proyección.

4.6 Metodología AASTHO 93 para Pavimentos Flexibles

La AASTHO 93 maneja una metodología en particular que emplea para el diseño de pavimentos flexibles aplicando una ecuación para poder determinar, lo que la normativa llama **NUMEROS ESTRUCTURALES (SN)**, el cual, promedio de estos valores poder establecer la determinación de los espesores de cada capa que conforman el pavimento flexible como son: carpeta asfáltica, capa base y capa subbase. Esta metodología es aplicada debido a los ensayos o estudios que realizaron para conocer el comportamiento del pavimento, y de esta manera llegar a estructurar pavimentos de buena calidad.

4.7 Variables del Método de Diseño de Pavimentos Flexibles

Es fundamental la aplicación de estas variables para la construcción de un pavimento óptimo, los cuales se describe a continuación.

4.7.1 Confiabilidad (R).

Es grado de seguridad del diseño del pavimento en llegar al fin de su periodo de análisis. Se determina mediante estudios que dependen de la clasificación de la vía, como se muestra en la siguiente tabla.

Teniendo en cuenta que la vía de estudio es de clasificación funcional autopista, por lo que se ha considerado una confiabilidad (R) del 85%.

Tabla 18: Confiabilidad según el Tipo de vía.

CONFIABILIDAD (R%)				
CLASIFICACION FUNCIONAL	NIVELES RECOMENDADOS			
CLASIFICACION FUNCIONAL	URBANOS	RURALES		
Carreteras interestatales y autopistas	85 - 99,9	80 - 99,9		
Arterias principales	80 - 99	75 - 95		
Vias colectoras	80 - 95	75 - 95		
Vias locales	50 - 80	50 - 80		

Fuente: (AASTHO, 93)

4.7.2 Desviación Estándar (Zr).

Esta variable, es un grado de certidumbre que describe al pavimento durante su periodo de diseño. Por lo que, la tabla siguiente determina la desviación estándar dependiendo del grado de confiabilidad, la cual se muestra a continuación.

Tabla 19: Relación de Confiabilidad y el Valor Zr.

DESVIACION ESTANDAR SEGUN EL GRADO DE CONFIABILIDAD.						
CONFIABILIDAD	CONFIABILIDAD Zr					
5	0					
60	-0,253					
70	-0,524					
75	-0,674					
80	-0,842					
85	-1,037					
90	-1,282					
92	-1,405					
94	-1,555					
95	-1,645					
96	-1,751					
97	-1,881					
98	-2,054					
99	-2,327					
99,9	-3,09					
99,99	-3,75					

Fuente: (AASTHO, 93)

4.7.3 Desviación Estándar Global o Típica (So).

Considerado como la variación sobre los materiales integrados por las capas que conforman el pavimento. Estos coeficientes son recomendados por la AASTHO

debido a la seguridad que brindan al momento de utilizarlos para los respectivos cálculos. Por lo tanto, el valor de la desviación estándar (So) a utilizar es de **0,49.**

A continuación, se detalla la tabla antes mencionada:

Tabla 20: Valor So de Acuerdo a las Condiciones del Pavimento.

PROYECTO DE PAVIMENTO	DESVIACION ESTANDAR(So)
Rango para Pavimentos Flexibles	0,40-0,50
Construcción nueva	0,45
Sobrecargas	0,50

Fuente: (AASTHO, 93)

4.7.4 Niveles de Serviciabilidad.

Es la capacidad de brindar seguridad al flujo de tránsito para el cual se ha diseñado, evaluando las condiciones de la vía. En el diseño del pavimento se elige la serviciabilidad inicial en función de su diseño y calidad de su construcción, la serviciabilidad final se asigna según la categorización del camino dispuesto por el proyectista.

De esta manera obtenemos los siguientes rangos de serviciabilidad:

1) Serviciabilidad Inicial.

Serviciabilidad Inicial (po)
4,5 para pavimentos rígidos
4,2 para pavimentos flexibles

2) Serviciabilidad Final.

Serviciabilidad final (pt)			
2 para caminos de menor tránsito			
2,5 o mas para caminos muy importantes			
3 para autopistas			

3) Diferencia del Índice de Serviciabilidad ΔPSI .

Es la representación final en el que se encontrara la vía, esto se obtiene mediante la diferencia entre la serviciabilidad final con la inicial.

Nota: este valor numérico se utiliza cuando se realizan los cálculos manualmente por medio de un ábaco, en el cual se grafica una curva aproximadamente al valor numérico obtenido entre: $(\Delta PSI = Pt - Po)$.

4.7.5 Modulo Resiliente.

Es la caracterización del material en la que está conformado la subrasante, se la puede representar como la relación entre el esfuerzo y la deformación del material. De esta manera se puede apreciar el comportamiento del material bajo las cargas ejercidas por los ejes.

$$Mr = \frac{f_d}{Er}$$

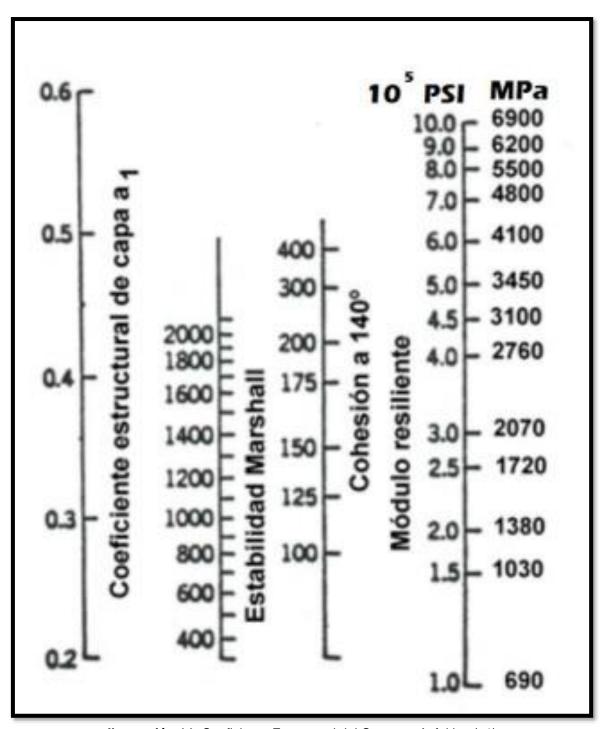
DONDE:

fd: Esfuerzo desviado (Kg).

Er: Deformación axial resiliente (cm²).

Por consiguiente, la norma AASTHO 93, nos proporciona las siguientes ecuaciones para poder determinar el CBR de diseño, presentadas a continuación.

Tabla 21: Determinación del Módulo Resiliente.


MÓDULO RESILIENTE (PSI)	CONDICIÓN
MR=1500*CBR	CBR ≤ 7,2%
MR=3000* CBR^(0,65)	7,2% < CBR ≤ 20%
MR=(4326*In CBR)+241	20% < CBR ≤ 60%
MR=((4326*In CBR)+241)*1,55	CBR > 60%

Fuente: (AASTHO, 93)

4.7.6 Gráficos de los Coeficiente de Capas (a).

Para determinar los coeficientes de base, subbase y mejoramiento de la estructura del pavimento se hará la utilización de ábacos, de modo que, el valor de entrada será el CBR de las capas, teniendo en cuenta que los valores del CBR serán los mínimos como lo establece la MTOP.

- Por otro lado, para determinar el coeficiente de la capa de cemento asfaltico, su valor de entrada será su módulo de resiliente (a₁).
- Para la base granular, se debe ingresar al nomograma por tal valor. Para tener una referencia del espesor del pavimento (a₂).
- Para la subbase y mejoramiento, se debe ingresar al nomograma por los siguientes valores, los cuales servirán para el dimensionamiento de las capas para la estructura del pavimento (a₃).

Ilustración 14: Coeficiente Estructural del Concreto Asfaltico (a1). **Fuente:** (AASTHO, 93)

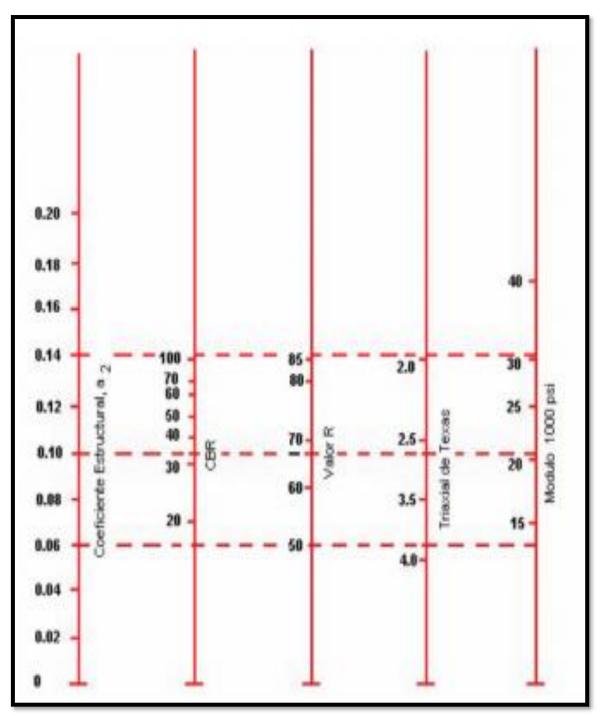
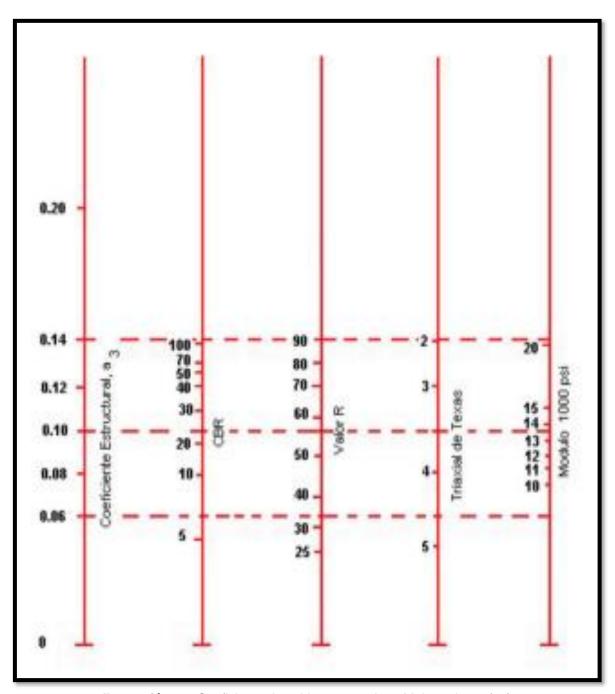



Ilustración 15: Coeficiente de Base Granular (a2).

Fuente: (AASTHO, 93)

Ilustración 16: Coeficiente de subbase granular y Mejoramiento (a3). **Fuente:** (AASTHO, 93)

4.8 Coeficiente de Drenaje (m)

Para los coeficientes de drenaje, se deberá tener en cuenta las características y la calidad de drenaje de los materiales para las capas de las bases y las subbases (m2 y m3) para ser seleccionados correctamente, esto también depende del porcentaje de tiempo en que la estructura del pavimento estará expuesta a la humedad cercanos a la saturación.

Este parámetro de drenaje se lo considera de acuerdo a la tabla de coeficientes de drenaje recomendada por la AASHTO. Debido a que estos valores tienen relación con la calidad de drenaje y el porcentaje de tiempo a lo largo de un año.

Tabla 22: Coeficientes de Drenaje para Pavimentos Flexibles.

CALIDAD DE DRENAJE	% de tiempo en que el pavimento esta expuesto a niveles de humedad proximos a la saturacion				
Dittitude	< 1 %	1 - 5 %	5 - 25 %	> 25 %	
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20	
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00	
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80	
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
Muy Pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Fuente: (AASTHO, 93)

4.9 Números Estructurales

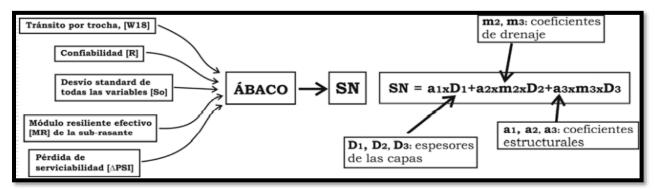
Los números estructurales son los resultados para ayudarnos a determinar los espesores de la estructura del pavimiento, considerando también la resistencia de la subrasante, el tráfico, índices de servicio, entre otros. También se los puede obtener mediante software, ábacos o fórmulas proporcionadas por la AASHTO 93.

Para el cálculo de los números estructurales, se utiliza la siguiente ecuación brindada por la AASHTO 93.

$$\log_{10} W_{18} = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\frac{\log(\Delta PSI)}{4.2 - 1.5}}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log M_R - 8.07$$

DONDE:

 W_{18} : Número de cargas de 18 kips (ejes equivalentes).


 Z_R : Desviación estándar.

 S_0 : Desviación estándar global.

SN: Numero estructural.

ΔPSI: Nivel de serviciabilidad.

 M_R : modulo resiliente.

Ilustración 17: Nomograma y Cálculo del Número Estructural. **Fuente:** (AASTHO, 93)

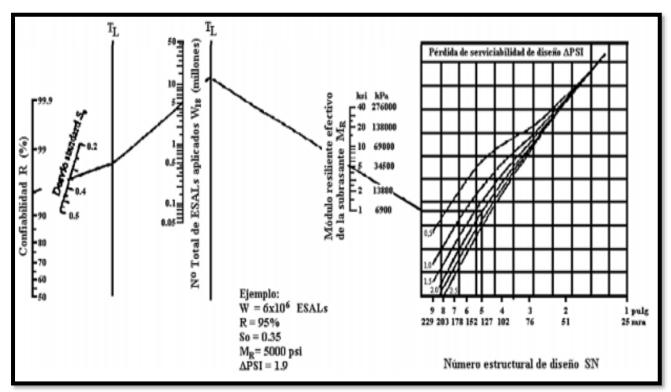


Ilustración 18: Nomograma de Obtención del Número Estructural.

Fuente: (AASTHO, 93)

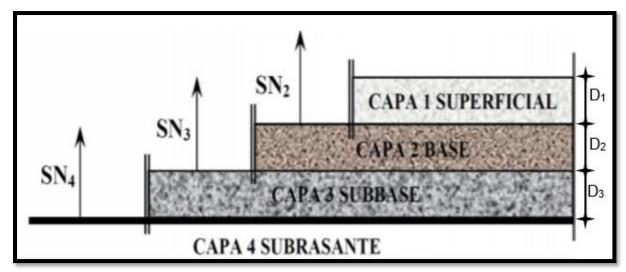
4.9.1 Espesores de Capas de la Estructura del Pavimento.

Nos basamos en la fórmula que nos proporciona la AASHTO.

$$SN = a_1 * D_1 + a_2 * D_2 * m_2 + a_3 * D_3 * m_3$$

DONDE:

 $a_1 a_2 a_3$: son los coeficientes de capa.


 D_1 D_2 D_3 : son los espesores de la estructura del pavimento.

 m_2 m_3 : son coeficientes de drenajes de las capas.

Para determinar el óptimo espesor de las capas que componen la estructura del pavimento flexible, es necesario cumplir las siguientes condiciones de diseño:

$$\begin{array}{lll} D_i^* \geq D_i & \text{siendo} & D_i = \frac{SN_2}{a_1} \\ SN_2^* = a_1 \ x \ D_1^* & & & & & & & & & & & \\ D_2^* \geq D_2 & \text{siendo} & D_2 = \frac{SN_3 - SN_2^*}{a_2} \\ SN_3^* = a_1 \ x \ D_1^* + a_2 \ x \ D_2^* & & & & & & & & \\ D_3^* \geq D_3 & \text{siendo} & D_3 = \frac{SN_4 - SN_3^*}{A_3} \end{array}$$

Ilustración 19: Distribución de los Espesores. **Elaborado por:** Kevin Chavez – Alex Pallo

Ilustración 20: Distribución de los Espesores del Pavimento. **Fuente:** (AASTHO, 93)

Tabla 23: Espesores Mínimos según los Ejes Equivalentes.

Numero de ESAL's	CONCRETO ASFALTICO (cm)	BASE GRANULAR (cm)
menos de 50000	2,5	10
50000-150000	5	10
150000-500000	6,5	10
500000-2′000000	7,5	15
2′000000-7′000000	9	15
mas de 7′000000	10	15

Fuente: (AASTHO, 93)

4.10 Cálculo de los ESAL'S

Los cálculos realizados para obtener los ESAL'S, se los determino mediante la clasificación de los vehículos por medio de sus ejes, los cuales transfieren una carga hacia el pavimento en Ton. Teniendo en cuenta que cada una de las cargas se las transformara a Kips, para así obtener el factor de equivalencia de cada eje.

Por lo tanto, utilizaremos las tablas LEF propuestas por la AASHTO 93 para realizar las conversiones respectivas de los pesos de cada eje a Kips.

a) Tablas LEF (Factores de Equivalencia de Carga).

Las tablas por utilizar serán, para una serviciabilidad final de **pt=2.5** (proporcionada en el subtítulo **niveles de serviciabilidad**) y un número estructural **SN=5** debido a que se considera que el tipo de camino en estudio es importante.

Tabla 24: Factores de carga, Ejes Simples pt 2.5.

Carga /eje	SN					
(kips)	1	2	3	4	5	6
2	.0004	.0004	.0004	.0004	.0004	.0004
4	.003	.004	.004	.003	.002	.002
6	.011	.017	.017	.013	.010	.009
8	.032	.047	.051	.041	.034	.031
10	.078	.102	.118	.102	.088	.080
12	.168	.198	.229	.213	.189	.176
14	.328	.358	.399	.388	.360	.342
16	.591	.613	.646	.645	.623	.606
18	1.00	1.00	1.00	1.00	1.00	1.00
20	1.61	1.57	1.49	1.47	1.51	1.55
22	2.48	2.38	2.17	2.09	2.18	2.30
24	3.69	3.49	3.09	2.89	3.03	3.27
26	5.33	4.99	4.31	3.91	4.09	4.48
28	7.49	6.98	5.90	5.21	5.39	5.98
30	10.3	9.5	7.9	6.8	7.0	7.8
32	13.9	12.8	10.5	8.8	8.9	10.0
34	18.4	16.9	13.7	11.3	11.2	12.5
36	24.0	22.0	17.7	14.4	13.9	15.5
38	30.9	28.3	22.6	18.1	17.2	19.0
40	39.3	35.9	28.5	22.5	21.1	23.0
42	49.3	45.0	35.6	27.8	25.6	27.7
44	61.3	55.9	44.0	34.0	31.0	33.1
46	75.5	68.8	54.0	41.4	37.2	39.3
48	92.2	83.9	65.7	50.1	44.5	46.5
50	112.	102.	79.	60.	53.	55.

Fuente: (AASTHO, 93)

Nota: Los valores utilizados para la transformación de kips a factores equivalentes de

carga, están señalados en el cuadro de color rojo.

tabla 25: Factores de Carga, Ejes Tándem pt 2.5.

Carga p/eje (kips)	SN								
	1	2	3	4	5	6			
2	.0001	.0001	.0001	.0000	.0000	.0000			
4	.0005	.0005	.0004	.0003	.0003	.0002			
6	.002	.002	.002	.001	.001	.001			
8	.004	.006	.005	.004	.003	.003			
10	.008	.013	.011	.009	.007	.006			
12	.015	.024	.023	.018	.014	.013			
14	.026	.041	.042	.033	.027	.024			
16	.044	.065	.070	.057	.047	.043			
18	.070	.097	.109	.092	.077	.070			
20	.107	.141	.162	.141	.121	.110			
22	.160	.198	.229	.207	.180	.166			
24	.231	.273	.315	.292	.260	.242			
26	.327	.370	.420	.401	.364	.342			
28	.451	.493	.548	.534	.495	.470			
30	.611	.648	.703	.695	.658	.633			
32	.813	.843	.889	.887	.857	.834			
34	1.06	1.08	1.11	1.11	1.09	1.08			
36	1.38	1.38	1.38	1.38	1.38	1.38			
38	1.75	1.73	1.69	1.68	1.70	1.73			
40	2.21	2.16	2.06	2.03	2.08	2.14			
42	2.76	2.67	2.49	2.43	2.51	2.61			
44	3.41	3.27	2.99	2.88	3.00	3.16			
46	4.18	3.98	3.58	3.40	3.55	3.79			
48	5.08	4.80	4.25	3.98	4.17	4.49			
50	6.12	5.76	5.03	4.64	4.86	5.28			
52	7.33	6.87	5.93	5.38	5.63	6.17			
54	8.72	8.14	6.95	6.22	6.47	7.15			
56	10.3	9.6	8.1	7.2	7.4	8.2			
58	12.1	11.3	9.4	8.2	8.4	9.4			
60	14.2	13.1	10.9	9.4	9.6	10.7			
62	16.5	15.3	12.6	10.7	10.8	12.1			
64	19.1	17.6	14.5	12.2	12.2	13.7			
66	22.1	20.3	16.6	13.8	13.7	15.4			
68	25.3	23.3	18.9	15.6	15.4	17.2			
70	29.0	26.6	21.5	17.6	17.2	19.2			
72	33.0	30.3	24.4	19.8	19.2	21.3			
74	37.5	34.4	27.6	22.2	21.6	23.6			
76	42.5	38.9	31.1	24.8	23.7	26.1			
78	48.0	43.9	35.0	27.8	26.2	28.8			
80	54.0	49.4	39.2	30.9	29.0	31.7			
82	60.6	55.4	43.9	34.4	32.0	34.8			
84	67.8	61.9	49.0	38.2	35.3	38.1			
86	75.7	69.1	54.5	42.3	38.8	41.7			
88	84.3	76.9	60.6	46.8	42.6	45.6			
90	93.7	85.4	67.1	51.7	46.8	49.7			

Fuente: (AASTHO, 93)
Tabla 26: Factores de Carga, Ejes Trídem pt 2.5.

Carga p/eje	SN							
(kips)	1	2	3	4	5	6		
2	.0000	.0000	.0000	.0000	.0000	.0000		
4	.0002	.0002	.0002	.0001	.0001	.0001		
6	.0006	.0007	.0005	.0004	.0003	.0003		
8	.001	.002	.001	.001	.001	.001		
10	.003	.004	.003	.002	.002	.002		
12	.005	.007	.006	.004	.003	.003		
14	.008	.012	.010	.008	.006	.006		
16	.012	.019	.018	.013	.011	.010		
18	.018	.029	.028	.021	.017	.016		
20	.027	.042	.042	.032	.027	.024		
22	.038	.058	.060	.048	.040	.036		
24	.053	.078	.084	.068	.057	.051		
26	.072	.103	.114	.095	.080	.072		
28	.098	.133	.151	.128	.109	.099		
30	.129	.169	.195	.170	.145	.133		
32	.169	.123	.247	.220	.191	.175		
34	.219	.266	.308	.281	.246	.228		
36	.279	.329	.379	.352	.313	.292		
38	.352	.403	.461	.436	.393	.368		
40	.439	.491	.554	.533	.487	.459		
42	.543	.594	.661	.644	.597	.567		
44	.666	.714	.781	.769	.723	.692		
46	.811	.854	.918	.911	.868	.838		
48	.979	1.015	1.072	1.069	1.033	1.005		
50	1.17	1.20	1.24	1.25	1.22	1.20		
52	1.40	1.41	1.44	1.44	1.43	1.41		
54	1.66	1.66	1.66	1.66	1.66	1.66		
56	1.95	1.93	1.90	1.90	1.91	1.93		
58	2.29	2.25	2.17	2.16	2.20	2.24		
60	2.67	2.60	2.48	2.44	2.51	2.58		
62	3.09	3.00	2.82	2.76	2.85	295		
64	3.57	3.44	3.19	3.10	3.22	3.36		
66	4.11	3.94	3.61	3.47	3.62	3.81		
68	4.71	4.49	4.06	3.88	4.05	4.30		
70	5.38	5.11	4.57	4.32	4.52	4.84		
72	6.12	5.79	5.13	4.80	5.03	5.41		
74	6.93	6.54	5.74	5.32	5.57	6.04		
76	7.84	7.37	6.41	5.88	6.15	6.71		
78	8.83	8.28	7.14	6.49	6.78	7.43		
80	9.92	9.28	7.95	7.15	7.45	8.21		
82	11.1	10.4	8.8	7.9	8.2	9.0		
84	12.4	11.6	9.8	8.6	8.9	9.9		
86	13.8	12.9	10.8	9.5	9.8	10.9		
88	15.4	14.3	11.9	10.4	10.6	11.9		
90	17.1	15.8	13.2	11.3	11.6	12.9		

Fuente: (AASTHO, 93)

4.10.1 Determinación de los Ejes Equivalentes.

Para obtener el número de ejes equivalentes, se determina los diferentes pesos de cada configuración de los vehículos en Ton, estas configuraciones de pesos serán transformadas a Kips y de la misma manera tendrán su factor de equivalencia de carga basándose en las tablas LEF brindadas por la AASHTO 93. En las tablas se verán reflejados los pesos y sus factores de equivalencia:

Tabla 27: Configuración de los Pesos de los Vehículos en Ton.

VEHICULOS TPDA		DISTRIBUCION DE CARGA POR EJE (TON)							
VEHICULUS	IPDA	E.S.R.S.	E.S.R.S.	E.S.R.D.	E.TANDEM	E.TANDEM	E.TRIDEM		
LIVIANOS	3494	1,5	2,5						
BUSES	263	7		11					
2DA	286	3		7					
2DB	164	7		11					
3A	103	7			20				
2\$2	8	7		11	20				
3S2	10	7			20	20			
353	13	7			20		24		

Elaborado por: Kevin Chavez – Alex Pallo

Tabla 28: Transformación de los Pesos de Toneladas a Kips.

FACTOR DE CONVERSION					
EJES	PESO (TON)		PESO (KIPS)		
	1,5		3,306		
	2,5		5,51		
SIMPLE	3	2,204	6,612		
	7		15,428		
	11		24,244		
TÁNDEM	20		44,08		
TRIDEM	24		52,896		

Elaborado por: Kevin Chavez - Alex Pallo

Una vez hecho la conversión de los pesos, se procede a calcular los factores de equivalencia según las tablas LEF realizando sus respectivas interpolaciones. Obteniendo como resultado el Factor camión (Fc), a continuación, se detalla en la siguiente tabla.

Tabla 29: Resumen del Factor de Equivalencia.

				DISTRIBUCIO	N DE CARGA POR I	EJE(KIPS)		
VEHICULOS	TPDA	E.S.R.S.	E.S.R.S.	E.S.R.D.	E.TANDEN	E.TANDEN	E.TRIDENT	FACTOR CAMION
		1,5	2,5					
LIVIANOS	3494	3,306	5,51					0,009484
		0,001444	0,00804					
		7		11				
BUSES	263	15,428		24,244				3,7068
		0,5478		3,159				
2DA	286	3		7				0,5651
ZUA	200 Z	6,612 0,0173		15,428 0,5478				0,3031
		7		11				
2DB	164	15,428		24,244				3,7068
		0,5478		3,159				1
		7		_	20			
3A	103	15,428			44,08			3,5698
		0,5478			3,022			
		7		11	20			
252	8	17,632		24,244	44,08			6,7288
		0,5478		3,159	3,022			
		7			20	20		1
352	10	22,04			44,08	44,08		6,5918
		0,5478			3,022	3,022		
		7			20		24	1
3\$3	13	28,652			44,08		52,896	5,1028
i .		0,5478			3,022		1,533	<u> </u>

Elaborado por: Kevin Chavez – Alex Pallo

Para realizar el cálculo de los ESAL'S se deberá aplicar la ecuación antes mencionada, el cual debe ingresar los datos respectivos.

$$ESAL's = TPDA * DIAS * Fd * Fc * FG * Fcamion$$

DONDE:

TPDA: ingresaremos los valores del **TPDA actual** realizado con anterioridad en el estudio de tráfico, el cual, se tiene los valores correspondientes a su composición vehicular. Dichos valores se los encuentra en la en la **tabla 12.**

DIAS: Se deberá ser ingresado el valor de 365 días, el cual equivale a 1año.

Fd y Fc: Teniendo como referencia que se realizara una vía de 2 calzada, conformada por 4 carriles (2 de ida y 2 de venida), usaremos los valores dispuestos por la tabla 17, los cuales son para Fd=0.5 y Fc= 0.9.

FG: Sera la proyección que se le dará a la vía, en este caso será proyectada para 20

años, el cual se debe determinar por la siguiente ecuación.

$$FG = \frac{(1+r)^n - 1}{r}$$

Tabla 30: Tasa de Crecimiento Vehicular de la Provincia de El Oro.

	TASA DE CRECIMIENTO ANNUAL VEHICULAR %				
EL ORO	LIVIANO	BUS	CAMION		
	3,06	1,63	2,02		

Fuente: (MTOP, 2003) Elaborado por: Kevin Chavez – Alex Pallo

Tabla 31: Factor de Crecimiento Vehicular Proyectado a 20 años.

	TIPOS DE VEHICULOS.				
FG	LIVIANO	BUS	CAMION		
	27,035	23,422	24,346		

Elaborado por: Kevin Chavez - Alex Pallo

Los datos mencionados anteriormente, se los ingresa a la hoja de cálculo y se determina los ESAL´S con un valor de 9'189.248,87 para el cálculo posterior se utilizará 9'200.000,00 ejes equivalentes.

A continuación, se mostrará la hoja de cálculo, donde se observará los valores ingresados y mencionados con anterioridad.

Tabla 32: Cálculo de ESAL'S.

				DISTRIBUCIO	N DE CARGA POR E	EJE(KIPS)				FACTOR DE	FACTOR DE						
VEHICULOS	TPDA	E.S.R.S.	E.S.R.S.	E.S.R.D.	E.TANDEN	E.TANDEN	E.TRIDENT	FACTOR CAMION	DIAS	DISTRIBUCION DIRECCIONAL (DD)	DISTRIBUCION CARRIL (DC)	FACTOR DE CRECIMIENTO (FG)	ESALS				
		1,5	2,5														
LIVIANOS	3494	3,306	5,51					0,009484	365	0,5	0,9	27,035	147145,08				
		0,001444	0,00804														
		7		11													
BUSES	263	15,428		24,244				3,7068	365	365 0,5	0,9	23,422	3750459,12				
		0,5478		3,159													
		3		7													
2DA	286	6,612		15,428				0,5651	0,5651	0,5651	5651 365	0,5	0,9	24,346	646280,54		
		0,0173		0,5478													
		7		11							l						
2DB	164	15,428		24,244				3,7068	3,7068 365	365	0,5	0,9	24,346	2430931,59			
		0,5478		3,159													
		7			20			3,5698	3,5698								
3A	103	15,428			44,08					3,5698	3,5698	3,5698	3,5698	3,5698 3	365	0,5	0,9
		0,5478			3,022												
		7		11	20												
252	8	17,632		24,244	44,08			6,7288	365	0,5	0,9	24,346	215257,03				
		0,5478		3,159	3,022												
		7			20	20											
3S2	10	22,04			44,08	44,08		6,5918 365	365	0,5 0,9	24,346	263592,93					
		0,5478			3,022	3,022											
		7			20		24										
3\$3	13	28,652			44,08		52,896	5,1028 365	5,1028 365	5,1028	365	0,5	0,9	24,346	265266,03		
		0,5478			3,022		1,533										
												SUMATORIA ESALS	9.189.248,87				

Elaborado por: Kevin Chavez – Alex Pallo

4.11 Determinación del CBR de Diseño

El CBR nos determinará la capacidad de soporte del suelo, para conocer estos valores se realizaron dos calicatas con 3 muestras a distintas profundidades, para llegar a la determinación del CBR de diseño.

CALICATA N°	ABSCISA	CBR %
1 LADO DERECHO	0+265	4.5
2 LADO IZQUIERDO	2+842	11.5

	Muestras de Calicatas <5	Muestras de Calicatas ≥ 5
CBR DE	Co cocces of do money consolided	Metodo de la AASHTO 93
DISEÑO	Se escoge el de menor capacidad Portante	Metodo del Instituto del Asfalto o Percentil
		Metodo del Criterio de la Media

Ilustración 21: Criterios para Determinar el CBR de Diseño. **Elaborado por:** Kevin Chavez – Alex Pallo

Teniendo en cuenta que solo se realizaron 2 muestras de calicatas a lo largo de vía de estudio, el CBR de diseño será el de menor capacidad portante. CBR de Diseño 4.5% (Subrasante), según la ilustración 21.

En las capas restantes del pavimento estableceremos los valores mínimos de CBR, recomendados por la MTOP 2003, las cuales están se detallan a continuación:


BASE ≥ 80 % MEJORAMIENTO ≥ 20 %

4.12 Módulos Resilientes (Mr) y Coeficientes de Capa (a)

El módulo resiliente de la subrasante se lo determina por la ecuación descrita por la **tabla 21**, con un CBR menor al 7,2%.

$$MR = 1500 * CBR$$
 $MR = 1500 * 4.5 = 6750 PSI$

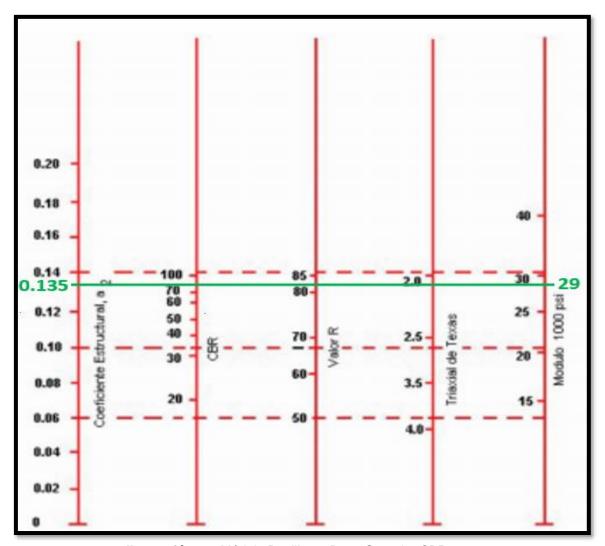

El coeficiente estructural de la carpeta asfáltica será de a₁= 0.42, debido a la estabilidad de Marshall en el asfalto de 1800 Lb. Se utilizará la ilustración 14

Ilustración 22: Coeficiente Estructural (Estabilidad de Marshall) (a1). **Fuente:** (AASTHO, 93)

Por consiguiente, Ahora determinaremos el coeficiente de capa de la base granular, partiendo de los valores mínimos del CBR, utilizando su respectivo nomogramas.

BASE (CBR 80%)

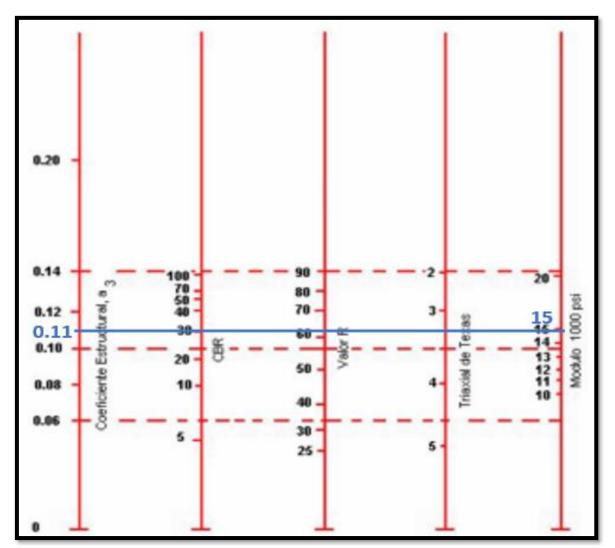


Ilustración 23: Módulo Resiliente Base Granular CBR 80%. **Fuente:** (AASTHO, 93)

Según el nomograma tenemos un coeficiente de capa de a_2 = 0.135 y un módulo resiliente de MR= 29000 PSI

De la misma manera, se determinará el coeficiente de capa para subbase, partiendo de los valores mínimos de CBR utilizando sus respectivos nomogramas.

SUBBASE (CBR 30%)

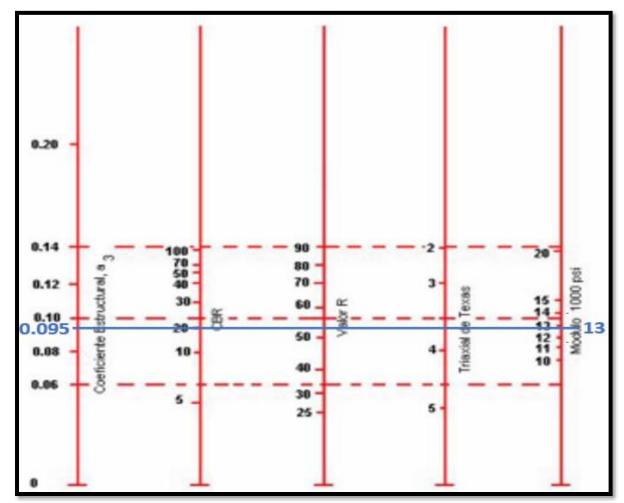


Ilustración 24: Módulo Resiliente Subbase con un CBR de 30%. **Fuente:** (AASTHO, 93)

Según el nomograma tenemos un coeficiente de capa de a_3 = 0.11 y un módulo resiliente de MR= 15000 PSI

Por último, se determinará el coeficientes de capa para mejoramiento, partiendo de los valores mínimos de CBR utilizando sus respectivos nomogramas.

MEJORAMIENTO (CBR 20%)

Ilustración 25: Módulo Resiliente Mejoramiento con un CBR de 20%. **Fuente:** (AASTHO, 93)

Según el nomograma tenemos un coeficiente de capa de a_4 = 0.095 y un módulo resiliente de MR= 13000 PSI.

Con la determinación de los coeficientes de capas y módulos resilientes, a partir de sus CBR de diseño, se observará en la siguiente tabla un resumen de los valores obtenidos mediante los nomogramas respectivos.

Tabla 33: Módulos Resilientes (Mr) y Coeficientes de Capas (a).

CAPAS	E. Marshall (Lb)	CBR%	MR (PSI)	а
C.A.C	1800	-	-	0,42
BASE	-	80	29000	0,135
SUB-BASE	-	30	15000	0,11
MEJORAMIENTO	-	20	13000	0,095
SUBRASANTE	-	4,5	6750	-

Elaborado por: Kevin Chavez - Alex Pallo

4.13 Números Estructurales

Para establecer los números estructurales de cada capa que componen la estructura del pavimento, utilizaremos el software de la AASHTO 93, el cual nos permite ingresar los valores de: índice de serviciabilidad, ejes equivalentes (ESAL'S), confiabilidad, desviación estándar – global y los módulos resilientes de las capas.

Estos valores serán ingresados de acuerdo a los aspectos y características de la carretera a diseñar.

A continuación, presentamos las siguientes ilustraciones donde obtendremos los valores sobre los números estructurales.

Ecuación AASHTO 93	- 🗆 X
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible Pavimento rígido	85 % Zr=-1.037 ▼ So 0.49
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial 4.2 PSI final 2.5	Mr 29000 psi
Información adicional para pavimentos rígidos	
Módulo de elasticidad del concreto - Ec (psi)	Coeficiente de transmisión de carga - (J)
Módulo de rotura del concreto - Sc (psi)	Coeficiente de drenaje - (Cd)
Tipo de Análisis	Número Estructural
• Calcular SN W18 = 9200	SN = 2,91
C Calcular W18	1 2731
Calcular	Salir

Ilustración 26: Números Estructurales de Base Granular. **Fuente:** (AASTHO, 93)

Ecuación AASHTO 93	- 🗆 ×
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible ○ Pavimento rígido	85 % Zr=-1.037 ▼ So 0.49
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial 4.2 PSI final 2.5	Mr 15000 psi
Información adicional para pavimentos rígidos	
Módulo de elasticidad del concreto - Ec (psi)	Coeficiente de transmisión de carga - (J)
Módulo de rotura del concreto - Sc (psi)	Coeficiente de drenaje - (Cd)
Tipo de Análisis	Número Estructural
© Calcular SN W10 - Calcular SN	SN = 3,74
Calcular W18 = 9200	000 0,14
(Calcular)	Salir

Ilustración 27: Números Estructurales de Subbase Granular. **Fuente:** (AASTHO, 93)

Ecuación AASHTO 93 Tipo de Pavimento Pavimento flexible Pavimento rígido	— X Confiabilidad (R) y Desviación estándar (So) 85 % Zr=-1.037 ▼ So 0.49		
PSI inicial 4.2 PSI final 2.5	Mr 13000 psi		
Información adicional para pavimentos rígidos Módulo de elasticidad del concreto - Ec (psi) Módulo de rotura del concreto - Sc (psi)	Coeficiente de transmisión de carga · (J) Coeficiente de drenaje · (Cd)		
Tipo de Análisis Calcular SN Calcular W18 = 9200000 Número Estructural SN = 3,95			
Calcular	Salir		

Ilustración 28: Números Estructurales del Mejoramiento. **Fuente:** (AASTHO, 93)

Ecuación AASHTO 93	- 🗆 X
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible Pavimento rígido	85 % Zr=-1.037 ▼ So 0.49
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial 4.2 PSI final 2.5	Mr 6750 psi
Información adicional para pavimentos rígidos	
Módulo de elasticidad del concreto - Ec (psi)	Coeficiente de transmisión de carga - (J)
Módulo de rotura del concreto - Sc (psi)	Coeficiente de drenaje · (Cd)
Tipo de Análisis	Número Estructural
© Calcular SN W18 = 9200	SN = 4,97
C Calcular W18	
Calcular	Salir

Ilustración 29: Números Estructurales de la Subrasante. **Fuente:** (AASTHO, 93)

4.14 Determinación del Coeficiente de Drenaje (m)

La ponderación del coeficiente de drenaje será 1, debido a que se trabaja con el 25% del tiempo en el que el pavimento está expuesto a niveles de humedad próximos a saturación. Por lo tanto, se asume que la calidad del drenaje del pavimento es buena. Este valor lo conseguimos de la **TABLA 22**, como se aprecia a continuación.

CALIDAD DE DRENAJE	% de tiempo en que el pavimento esta expuesto a niveles de humedad proximos a la saturación < 1 % 1 - 5 % 5 - 25 % > 25 %								
DILLINGE									
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20					
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00					
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80					
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60					
Muy Pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40					

4.15 Determinación de los Espesores del Pavimento Flexible

Para el cálculo de los espesores del pavimento flexible, se tiene en cuenta las ecuaciones de la metodología AASTHO 93, correspondiente a la ecuación, que se encuentra en el subtítulo llamando "espesores de capa de la estructura del pavimento", comprobando que se cumplan las condiciones establecidas por la llustración 19, a continuación, se detalla mediante una hoja de cálculo los espesores calculados y corregidos.

$$SN = a_1 * D_1 + a_2 * D_2 * m_2 + a_3 * D_3 * m_3$$

Tabla 34: Resumen de los Espesores del Pavimento Flexible.

CAPAS	E. Marshall (Lb)	CBR%	MR (PSI)	a	SN	m	D (pulg)	D*(pulg)	SN*	espesor D (cm)
C.A.C	1800	-	-	0,420	-	1	6,93	4	1,68	10
BASE	-	80	29000	0,135	2,91	1	15,26	8	1,08	20
SUB-BASE	-	30	15000	0,110	3,74	1	10,82	10	1,1	25
MEJORAMIENTO	-	20	13000	0,095	3,95	1	11,68	12	1,14	30
SUBRASANTE	-	4,5	6750	-	4,97	1	-	-	-	-
								TOTAL	5	

Elaborado por: Kevin Chavez – Alex Pallo

4.16 Diseño Geométrico Propuesto por Autores

Al proponer un diseño geométrico, se debe establecer las normas dispuestas por la MTOP 2003, para de esta manera garantizar una vía que cumpla con todas las necesidades requeridas para los usuarios.

a) Diseño horizontal.

Para elaborar el diseño horizontal, se deben estimar los siguientes parámetros:

- 1) Velocidad de diseño.
- 2) Velocidad de circulación.
- 3) Distancia de visibilidad de parada
- 4) Radio de curvatura horizontal y peralte.

1) Velocidad de diseño.

Es la escogida para el diseño de los elementos geométricos, teniendo en cuenta que será la velocidad máxima de circulación en la que los usuarios podrán mantenerse con seguridad y comodidad sobre una determinada sección de la carretera.

Este parámetro de diseño depende del volumen del tráfico, categoría y relieve de la vía, para este caso se considera la categoría de vía **R – I o R - II** y terreno **Ilano**, como se muestra a continuación.

Tabla 35: Velocidad de Diseño.

	VELOCIDAD DE DISEÑO (Km/h)											
	RELIEVE LLANO											
DE LA VIA	PARA EL CALCULO DE L TRAZADO DEL PERFIL		UTILIZADA PARA EL ELEMENTOS DE TRANSVERSAL Y OTRO DE LA VELO	LA SECCION OS DEPENDIENTES								
	Recomendada	Absoluta	Recomendada	Absoluta								
R-I O R-II	120	110	100	95								
1	110	100	100	90								
П	100	90	90	85								
III	90	80	85	80								
IV	80	60	80	60								
V	60 50 60 50											

Fuente: (MTOP, 2003)

Elaborado por: Kevin Chavez – Alex Pallo

La velocidad de diseño escogida para la vía de estudio es de 100 km/h.

2) Velocidad de circulación.

Es la velocidad real del vehículo en la que circulara a lo largo de un tramo de la carretera en función a la velocidad de diseño, bajo las circunstancias prevalecientes del tráfico y estado del pavimento. Para la vía de estudio, se considera los siguientes parámetros sobre la velocidad de circulación

TPDA	Volumen de tráfico
<1000	Bajo
1000 - 3000	Medio
> 3000	Alto

Teniendo en cuenta que el volumen de tráfico proyectado es alto, mayor a 3000 vehículos, el cual sirve para obtener la velocidad de circulación de la carretera teniendo una velocidad de **diseño de 100 km/h**.

Tabla 36: Velocidad de Operación.

VELOCIDAD	VELOCIDAD DE OPERACIÓN PROMEDIO - KPH										
DE DISEÑO	VOL	VOLUMEN DE TRANSITO									
КРН	BAJO	MEDIO	ALTO								
40	37	35	34								
50	46	44	42								
60	55	51	48								
70	63	59	53								
80	71	66	57								
90	79	73	59								
100	86	79	60								
120	92	85	61								

Fuente: (MTOP, 2003)

De acuerdo con la **tabla 36**, la velocidad real en la que los vehículos circularan por la vía es de **60 km/h**.

3) Distancia de visibilidad de parada.

Es una longitud continua de la vía, que es visible para que el conductor que transita en ella pueda ejecutar con seguridad las maniobras que sean necesarios o que se decida elaborar al observar un objeto en su trayectoria.

Se estima que el tramo de vía en estudio está a nivel, es decir que no posee pendiente. Para el respectivo cálculo, se tiene la siguiente expresión general para la determinación de la distancia de visibilidad de parada ante obstáculos.

$$D = 0.694 V_o + \frac{{V_o}^2}{254(f \pm g)}$$

DONDE:

 V_o : Velocidad inicial, (km/h)

f: coeficiente de fricción longitudinal de la llanta y el pavimento.

g: pendiente de la vía.

Antes de iniciar con el cálculo de Distancia de visibilidad de parada, primero se debe determinar el coeficiente de fricción, el cual, se usará la siguiente ecuación.

$$f = \frac{1.15}{V^{0.3}}$$

DONDE:

V: es la velocidad de diseño

Por lo tanto, teniendo la variables definidas, se procede a reemplazar los valores en las ecuaciones antes mencionadas, teniendo en cuenta que la velocidad de diseño, será la velocidad inicial.

$$f = \frac{1.15}{100^{0.3}} = 0.289$$

$$\mathbf{D} = 0.694(100) + \frac{100^2}{254(0.289)}$$

$$D = 206m$$

Por lo tanto, se observa que el valor mínimo de distancia de visibilidad de parada es **D = 206 m**

4) Radio de curvatura horizontal y peralte.

a) Peralte

El peralte es considerado como un elemento de seguridad vial, debido al momento en el que un vehículo ingresa a una curva, en ese instante las fuerzas actúan sobre el automóvil provocando que se retire de la vía. Por lo tanto, es necesario la presencia del peralte en la curvas, debido que contrarresta aquellas fuerzas y ayuda a que los vehículos se mantengan en la carretera.

De esta manera, el peralte considerado para la vía de estudio, se lo puede determinar mediante una tabla proporcionada por la MTOP 2003, en el que considera las tasas de sobreelevación o peralte dependiendo del tipo de área en el que se desarrolla el proyecto. A continuación, se muestra la siguiente tabla.

Tabla 37: Tasa de Sobreelevación o Peralte.

TASA DE	
SOBREELEVACION	TIPO DE AREA
(e) EN %	
10	Rural montañosa
8	Rural plana
6	Suburbana
4	Urbana

Fuente: (MTOP, 2003)

Para la vía de estudio, se ha determinado como una vía de área **suburbana**, el cual ofrece un peralte de diseño del **6%**.

b) Radio mínimo.

Al determinar el factor de sobreelevación, se procede a determinar el radio mínimo de curvatura para la vía, el cual, será calculada con la siguiente ecuación.

$$R = \frac{V^2}{127(e+f)}$$

DONDE:

R: Radio mínimo (m)

e: Sobreelevación o peralte, (km/h)

f: Factor de fricción lateral.

V: Velocidad de diseño (km/h).

$$R = \frac{100^2}{127(0.06 + 0.13)}$$

R = 414.42 m

Tabla 38: Radios Mínimos Recomendados por la MTOP 2003.

VELOCIDAD DE DISEÑO (Km/h)	COEFICIENTE DE FRICCION LATERAL (f)	RADIO MINIMO CALCULADO	RADIO MINIMO RECOMENDADO
50	0,19	78,74	80
60	0,185	125,98	130
70	0,16	183,73	185
80	0,14	251,97	256
90	0,134	328,78	330
100	0,13	414,42	415
110	0,124	517,6	520
120	0,12	629,92	630

Fuente: (MTOP, 2003)

El radio mínimo recomendado para las curvas horizontales en la vía de estudio es de $\bf R$ = 415 $\bf m$.

• Diseño transversal.

La sección transversal de la vía en estudio, se determina mediante la norma guía MTOP 2003, por lo que, sus componentes de diseño se describen a continuación en una tabla.

Tabla 39: Diseño de Sección Transversal.

DISEÑO DE SECCION TRANSVERSAL								
ANCHO DE CALZADA	7.20 m							
PERALTE LONGITUDINAL DE CALZADA (sub-urbana)	6%							
PENDIENTE TRANSVERSAL DE CALZADA	2%							
ANCHO DE ESPALDONES (EXTERIORES)	1.50 m							
ANCHO DE ESPALDONES (INTERIORES)	1.20 m							
GRANDIENTE TRANSVERSAL DE ESPALDONES	2%							
CUNETAS PENDIENTE LONGITUDINALES	0.20 %							
SECCION DE CUNETAS TIPICAS	0.20 X 0.55 m							

Elaborado por: Kevin Chavez - Alex Pallo

La normativa de diseño dispuesto por la MTOP 2003, propone un ancho de espaldón de **2 a 2.5 metros**, debido a que la vía está clasificada como **autopista**, pero se ha considerado proponer un ancho de espaldón de **1.5 metros** desde la abscisa 0+000 hasta la abscisa 3+000, porque, en ciertos tramos de la vía existen sectores urbanos, el cual, no se permite ampliar más la carretera.

Una vez teniendo los componente del diseño horizontal y transversal de la vía, se procede a realizar una tabla de resumen, en el que se detallan los elementos del diseño definitivo de la carretera.

Tabla 40: Resumen del Diseño Geométrico de la vía de Estudio.

Diseño Geométrico Propuesto por los Autores.										
Clasificación de la vía proyectada a 20 años con un TPDA de 9274 vehículos mixtos y terreno llano.	Clase R - I o R - II									
Velocidad de diseño	100 km/h									
Velocidad de circulación	60 km/h									
Distancia de visibilidad de parada	206 m									
Radio mínimo	350 m									
Radio recomendado	415 m									
Gradiente de longitud máxima	3%									
Gradiente de longitud mínima	0.5%									
Gradiente transversal de espaldones y calzada	2%									
Peralte máximo	10 %									
Peralte mínimo recomendado por el sitio	6%									
Ancho de calzada	7.20 m									
Ancho de espaldones (exteriores)	1.50 m									
Ancho de espaldones (interiores)	1.20 m									
Cunetas pendiente longitudinales	0.20%									
Secciones de cunetas típicas (triangular)	0.20 X 0.50 m									

Elaborado por: Kevin Chavez – Alex Pallo

Posteriormente se anexa la tabla de ilustración de resumen general de diseños geométricos para carreteras de diferentes tipos, dispuesto por la MTOP 2003.

República del Ecuador MINISTERIO DE OBRAS PUBLICAS

VALORES DE DISEÑO RECOMENDADOS PARA CARRETERAS DE DOS CARRILES Y CAMINOS VECINALES DE CONSTRUCCIÓN

			CLA						CLAS						CLAS						CLAS						LASE		-		
NORMAS		3 000						1 000							- 1 00				_		- 300						DE 10				
Northina	LL	O		LL	O	M	RECO	O	M	LL	O	M	RECO	O	M	AB	O	M	RECO	O	M	AB	O	M	RECO	O	M		OLUTA O M		
Velocidad de diseño (K.P.H.)	110	100		100	80	60	100	90	70	90	80	50	90	80	60	80	60	40	80	60	50	60	35		60	50	40	50 3			
Radio mínimo de curvas horizontales (m)	430	350	210	350	210	110	350	275	160	275	210	75	275	210	110	210	110	42	210	110	75	110	30	20	110	75	42	75 30	0 20(*)		
Distancia de visibilidad para parada (m)	180	160	110	160	110	70	160	135	90	135	110	55	135	110	70	110	70	40	110	70	55	70	35	25	70	55	40	55 3	5 25		
Distancia de visibilidad para rebasamiento (m)	830	690	565	690	565	415	690	640	490	640	565	345	640	565	415	565	415	270	480	290	210	290	150	110	290	210	150	2101:	50 110		
Peralte								MÁ	XIMC	= 10	1%									10%	(Para	V > 5	0 K.P	.H.)	8% (Pa	ara V	< 50 K	.P.H.)			
Coeficiente "K" para: (2)																															
Curvas verticales convexas (m)	80	60	28	60	28	12	60	43	19	43	28	7	43	28	12	28	12	4	28	12	7	12	3	2	12	7	4	7 3	3 2		
Curvas verticales cóncavas (m)	43	38	24	38	24	13	38	31	19	31	24	10	31	24	13	24	13	6	24	13	10	13	5	3	13	10	6	10 :	5 3		
Gradiente longitudinal (3) máxima (%)	3	4	6	3	5	7	3	4	7	4	6	8	4	6	7	6	7	9	5	6	8	6	8	12	5	6	8	6 8	8 14		
Gradiente longitudinal (4) mínima (%)															0,5%																
Ancho de pavimento (m)		7,3			7,3			7,0			6,70			6,70			6,00				6,0	0					4,00 6	8)			
Clase de pavimento	Can	peta A	sfälti	a y H	emiş	gón		Car	peta A	sfälti	ca		Ca	rpeta /	Asfälti	ca o I	D.T.S.	B.	D	D.T.S.B	Cap.		nular	0	Capo	a Grar	ular o	Empe	drado		
Ancho de espaldones (5) estables (m)	3,0	2,5	2,0	2,5	2,0	1,5	3,0	2,5	2,0	2,5	2,0	1,5	2,0	1,5	1,0	1,5	1,0	0,5		0,60 (C.V.	Гіро 6	5 y 7)								
Gradiente transversal para pavimento (%)			2,)					2,0)					2,0)				2,5 (C 4,0 (C							4,0				
Gradiente transversal para espaldones (%)		2	$0^{(6)}$	- 4,0					2,0 -	4,0					2,0 -	4,0				4,0 (C											
Curva de transición											USE	NSE I	SPIR.	ALES	CUAN	NDO	SEA N	NECE	SARI	o											
Carga de diseño												HS	- 20	44;	HS-	MOP	; H	S - 2	5												
Puentes Ancho de la calzada (m)		SERA LA DIMENSION DE LA CALZADA DE LA VIA INCLUIDOS LOS ESPALDONES																													
Ancho de Aceras (m) (7)		0,50 m minimo a cada lado																													
Mínimo derecho de vía (m)																				cativo	de dic	ha Le	у								
			LL =	- TER	REN(O PLA	NO	0 = TI	ERRE	NO O	NDU	LAD	O M	= TER	RENC) MO	NTAN	NOSC)						LL = TERRENO PLANO 0 = TERRENO ONDULADO M = TERRENO MONTAÑOSO						

Ilustración 30: Valores de Diseño Recomendados para Carreteras.

Fuente: (MTOP, 2003)

Nota: De esta manera, se comprueba que el diseño propuesto por los autores se encuentra dentro de los rangos establecidos por la MTOP 2003.

4.16.1 Drenaje.

En la vía Santa Rosa – Puerto Jelí actualmente posee una alcantarilla ducto cajón, el cual no abastece a evacuar los cauces existentes cerca de la carretera. Es por ello, que se realizará un análisis obteniendo una área de aportación para proponer las obras de arte (alcantarillas) para el drenaje vial.

Para ello, se debe determinar un área hidráulica, que en este caso son las hectáreas del sector camaronero, para mediante el método de TALBOT poder establecer las dimensiones y cantidad de obras de drenajes necesarias para evacuar los causes proporcionados por el sector camaronero.

Ilustración 31: Área Hidráulica de Aportación. Elaborado por: Kevin Chavez – Alex Pallo.

• Método de TALBOT.

La expresión de la fórmula de TALBOT es la siguiente:

$$a = 0.183 c \sqrt[4]{A^3}$$

DONDE:

a: Área hidráulica necesaria en la obra, en metros cuadrados (m²).

A: Área de aportación en hectáreas (Ha)

C: coeficiente relacionada con las características del terreno (adimensional).

Se logro determinar el área de aportación mediante el uso de Google Earth, el cual se obtuvo como resultado **A= 283 Ha**, y el coeficiente de escorrentía © de **0.4** ubicado en la tabla 6 en el capítulo II. Por lo tanto, el área hidráulica necesaria en la obra es:

Tabla 41: Área Hidráulica Necesaria.

Elaborado por: Kevin Chavez - Alex Pallo.

Tendiendo un área hidráulica de $a=5.10 \text{ m}^2$, se necesitará 4 obras de drenaje vial con dimensiones de $1.20 \times 1.20 \text{ m}$ tipo ducto cajón. De esta manera obteniendo un área de evacuación mayor al área de hidráulica necesaria.

4.17 Presupuesto

De acuerdo a lo mencionado en el **Cap. I.,** en el presente trabajo de titulación analizará los rubros propuestos por la consultora, el cual examinaremos detalladamente sus objetivos planteados, corroborando si las descripciones en el presupuesto están acogiendo todos los parámetros correspondientes para la ampliación de la vía.

4.17.1 Rubros y Costos Propuestos por la Consultora.

A continuación, se presenta un resumen sobre la descripción de los rubros con sus respectivos costos propuestos por la consultora.

 Tabla 42: Resumen de Rubros y Costos por la consultora.

ITEM	DESCRIPCION	COSTO TOTAL
	Rehabilitacion de la calzada	
I	Obras Preliminares	25.127,92
II	Excavaciones y movimientos de tierra	1.625.337,85
III	Calzada	1.221.233,61
IV	Aceras de hormigon	416.135,37
V	Paradero	24.548,75
VI	Reparacion de agua potable	4.424,00
VII	Reparacion por afectaciones	69.965,27
VIII	Drenaje	289.315,36
IX	Señalizacion	145.878,76
X	Red de distribucion de Agua Potable	185.058,43
	Sistema de Aguas Residuales	
XI	Red principal tramo 00+00 hasta 00+400	32.271,65
XII	Red terciaria pasando el redondel tramo 00+400	9.478,39
XIII	Emisario desde bombeo hasta laguna de oxidacio	42.891,79
XIV	Caseta para sistema de bombeo	16.776,50
XV	Sistema Electrico para bombeo	16.286,14
XVI	Sistema Electrico.	1.184.576,78
	Medidas Ambientales	
XVII	Plan de Medidas Ambientales	97.454,72
XVIII	Programa de seguridad industrial	4.101,76
	TOTAL	5.410.863,05

Elaborado por: Kevin Chavez – Alex Pallo.

Nota: Los rubros de la consultora, estarán especificados de mejor manera en los ANEXOS.

4.18 Análisis del Presupuesto Considerando la Ley de Pareto

La ley de Pareto La ley de Pareto es un principio que establece que el 20% del esfuerzo destinado a una tarea genera un 80% de los resultados. Esto es aplicable a distintas áreas, como la actividad empresarial o el ámbito personal.

Para entenderlo mejor, podemos aplicar esta norma en el presupuesto de la consultora, donde el 80% del costo total pueden provenir del 20% de los rubros, teniendo en cuenta lo antes mencionado, en la **tabla 43** el cual se puede observar que el 20% de los rubros más predominantes del presupuesto por parte de la consultora el cual serian 50 rubros que poseen grandes costos, llegando a fomentar el 80% del costo del total del presupuesto.

A continuación, en la **tabla 44** se podrá observar el 20% de los rubros más predominantes del presupuesto por parte de los autores, el cual se realizado un Análisis de Precios Unitarios (APU) de los 50 rubros mas predominantes, el cual se observa que existen algunas inconsistencia al momentos de analizar los APUS. Por lo tanto, realizando las respectivas modificaciones en: Equipos, Costos horario, Mano de obra y Rendimiento (actualizados 2021) el total del 80% del presupuesto generado por el 20% de los mismo rubros (tomados anteriormente) se reduciría.

Se podrá apreciar de mejor manera los APUS en la sección de los Anexos.

Tabla 43: Resumen del 20% los Rubros con Costos (Consultora).

RUBRO No.	DESCRIPCIÓN DEL RUBRO	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO TOTAL
	REHABILITACIÓN DE CALZADA				
I	OBRAS PRELIMINARES				
1	REMOCIÓN DE EDIFICACIONES, CASAS Y OTRAS CONSTRUCCIONES, INCLUYE	m^2	1.406,00	6,74	9.476,44000
2	TRANSPORTE. REMOCIÓN ESTRUCTURAS DE HORMIGÓN ARMADO, EXISTENTES	m^3	233,10	28,60	6.666,66000
3	DESBROCE, DESBOSQUE Y LIMPIEZA	Ha	7,81	646,20	5.046,82200
II	EXCAVACIONES Y MOVIMIENTO DE TIERRA				
7	EXCAVACION A MAQUINA SIN CLASIFICAR EXCAVACION EN FANGO	m^{3} m^{3}	111.823,21 26.073,05	3,32 4,12	371.253,05720 107.420,96600
	ESTABILIZACION DE MATERIAL PETREO (COLOCACION DE PEDRAPLEN BAJO				
8	SUBRASANTE)	m^3	47.710,76	11,66	556.307,46160
9	MATERIAL DE PRÉSTAMO LOCAL, TENDIDO Y COMPACTADO.	m^3	3.413,82	3,42	11.675,26440
10	MATERIAL DE PRÉSTAMO IMPORTADO, TENDIDO Y COMPACTADO.	m ³	40.998,85	4,21 0.24	172.605,15850
11	TRANSPORTE DE MATERIAL DE EXCAVACIÓN (transporte libre 500 m) TRANSPORTE DE MATERIAL DE PRÉSTAMO IMPORTADO	m ³ /km m ³ /km	82.534,36 696.980,45	0,24	19.808,24640 167.275,30800
13	TRANSPORTE DE MATERIAL PETREO PARA ESTABILIZACION DE LA SUBRASANTE	m³/km	912.468,29	0,24	218.992,38960
III	CALZADA				
14	MEJORAMIENTO DE LA SUBRASANTE CON SUELO SELECCIONADO	m^3	30.574,94	11,75	359.255,54500
15 16	SUB-BASE CLASE II BASE CLASE I	m^{3} m^{3}	18.246,53 14.267,00	14,09 14,52	257.093,60770 207.156,84000
17	TRANSPORTE DE MATERIAL DE MEJORAMIENTO	m³/km	535.367,20	0,24	128.488,12800
18	TRANSPORTE DE MATERIAL DE SUB-BASE CLASE II	m³/km	319.496,74	0,24	76.679,21760
19	TRANSPORTE DE MATERIAL DE BASE CLASE 1	m³/km	247.389,78	0,24	59.373,54720
20	GEOTEXTIL PARA ESTABILIZACION DE SUB-RASANTE	m^2	76.106,70	1,75	133.186,72500
IV	ACERAS DE HORMIGON	1	46.450.00	24.00	205 707 00000
21	ACERA HORMIGÓN SIMPLE e=12cm SUMINISTRO E INSTALACIÓN DE JUNTAS DE DILATACIÓN	m ²	16.450,00 6.632,06	24,06 2,83	395.787,00000 18.768,72980
V	PARADERO		0.032,00	2,00	10.700,72300
26	SUMINISTRO E INSTALACIÓN DE TUBO REDONDO ACERO ESTRUCTURAL A500	kg	2.720,64	4,18	11.372,27520
VII	REPARACIONES POR AFECTACIONES				
37	HORMIGON SIMPLE PLINTOS fc = 210 Kg/cm2	m^3	27,86	201,92	5.625,49120
38 39	HORMIGON SIMPLE RIOSTRAS , F'C = 210 KG/CM2 HORMIGON SIMPLE EN COLUMNAS F'C = 210 KG/CM2	m^{3} m^{3}	21,20 17,56	219,66 217,55	4.656,79200 3.820,17800
43	MAMPOSTERÍA DE BLOQUE DE MACIZO 40X20X7 cm.	m^2	1.248,50	13,19	16.467,71500
44	ENLUCIDO LISO	m^2	1.491,50	9,64	14.378,06000
VIII	DRENAJE				
51	HORMIGÓN SIMPLE DE f c=210 kg/cm2	m^3	102,53	238,64	24.467,75920
52 53	ACERO DE REFUERZO, fy=4200 kg/cm2 CUNETAS - BORDILLO; F'C= 210 kg/cm2; V= 0.141 M3/ML	kg	18.997,13 7.296,79	2,02 26,81	38.374,20260 195.626,93990
IX	SEÑALIZACION	m	7.230,73	20,01	130.020,30330
75	MARCAS DE PAVIMENTO CONTINUO a=0.10 m	m	14.000,00	1,04	14.560,00000
79	PINTURA DE ALTO TRÁFICO (CICLOVÍA EN PAVIMENTO)	m^2	9.360,16	6,91	64.678,70560
85	GUARDAVIAS DOBLE	m	132,00	108,71	14.349,72000
90	RED DE DISTRIBUCIÓN DE AGUA POTABLE TRAZADO, REPLANTEO Y NIVELACIÓN	711	5.486,19	1,27	6.967,46130
91	EXCAVACIÓN MECANICA DE ZANJAS SUELO COMÚN DE 0-2 M.	m^3	3,390,46	2,88	9.764,52480
92	RASANTEO EN FONDO DE ZANJA	m ²	3.390,46	1,67	5.662,06820
93	COLCHÔN DE ARENA	m^3	1.121,76	9,91	11.116,64160
94	SUM. E INST. TUBERIA PVC DE 315MM, 1 MPA U/Z	m	1.060,90	73,96	78.464,16400
95 97	SUM. E INST. TUBERIA PVC DE 160MM, 1 MPA U/Z. SUM. E INST. TUBERIA PVC DE 90MM, 1 MPA U/Z.	m	559,39 1.853,91	30,60 9,85	17.117,33400 18.261,01350
131	RELLENO COMPACTADO CON MATERIAL DE EXCAVACIÓN	711 711	2.373,33	3,85	9.137,32050
	SISTEMA DE AGUAS RESIDUALES		2010,00	3,00	31137,02530
XI	RED PRINCIPAL TRAMO 00+000 HASTA 00+400				
140	RELLENO DE ZANJAS CON MATERIAL DE EXCAVACIÓN SELECCIONADO	m^3	263,02	6,05	1.591,27100
141	RELLENO DE ZANJAS CON MATERIAL DE MEJORAMIENTO	m ³	219,19	17,99	3.943,22810
143 XIII	SUMINISTRO E INSTALACIÓN DE TUBERÍA PERFILADA E/C D=220MM. EMISARIO DESDE BOMBEO HASTA LAGUNA DE OXIDACIÓN	m	547,96	21,66	11.868,81360
167	RELLENO DE ZANJAS CON MATERIAL DE MEJORAMIENTO	m^3	291,60	17,99	5.245,88400
XIV	CASETA PARA SISTEMA DE BOMBEO				
177	HORMIGÓN SIMPLE DE f c=210 kg/cm2	m^3	16,84	238,64	4.018,69760
178	ACERO DE REFUERZO, fy=4200 kg/cm2	kg	1.336,36	2,02	2.699,44720
XVI	SISTEMA ELECTRICO TENDIDO, AMARRE, ENTUBADO DE CONDUCTOR COBRE #2 AWG -XLPE- 15KV				
199	ENMALIADO	m	2.000,00	11,28	22.560,00000
204	PROVISION Y MONTAJE DE POSTE SECCIONADO METALICO 11 MTS BASE 4 "	и	238,00	1.104,70	262.918,60000
	PLAN DE MEDIDAS AMBIENTALES				
224	AGUA PARA CONTROL DE POLVO	m^3	1.980,00	3,78	7.484,40000
225	ESCOMBRERA. (RECONFORMACIÓN CON MATERIAL EXCEDENTE)	m^3	114.830,27	0,52	59.711,74040

TOTAL 4.229.227,56

Elaborado por: Kevin Chavez – Alex Pallo.

Tabla 44: Resumen del 20% los Rubros con Costos (Autores).

RUBRO No.	DESCRIPCIÓN DEL RUBRO	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO TOTAL
I	OBRAS PRELIMINARES				
1	REMOCIÓN DE EDIFICACIONES, CASAS Y OTRAS CONSTRUCCIONES, INCLUYE		7,400,00	5.00	0.277.01502
	TRANSPORTE.	m²	1.406,00	5,96	8.377,01502
3	REMOCIÓN ESTRUCTURAS DE HORMIGÓN ARMADO, EXISTENTES DESBROCE, DESBOSQUE Y LIMPIEZA	m³ Ha	233,10 7.81	28,50 642.97	6.642,39483
3	DESBROCE, DESBOSQUE Y LIMPIEZA	Па	7,81	642,97	5.021,60021
Ш	EXCAVACIONES Y MOVIMIENTO DE TIERRA				
6	EXCAVACION A MAQUINA SIN CLASIFICAR	m ³	111.823,21	2,58	288.951,17464
7	EXCAVACION EN FANGO	m ³	26.073,05	2,87	74.706,41777
8	ESTABILIZACION DE MATERIAL PETREO (COLOCACION DE PEDRAPLEN BAJO SUBRASANTE)	m³	47.710,76	9,95	474.934,28900
9	MATERIAL DE PRÉSTAMO LOCAL, TENDIDO Y COMPACTADO.	m ³	3.413,82	2,65	9.058,16171
10	MATERIAL DE PRÉSTAMO IMPORTADO, TENDIDO Y COMPACTADO. TRANSPORTE DE MATERIAL DE EXCAVACIÓN (transporte libre 500 m)	m³ m³/km	40.998,85 82.534,36	2,84 0,20	116.531,54419 16.648,10810
12	TRANSPORTE DE MATERIAL DE PRÉSTAMO IMPORTADO	m³/km	696.980,45	0,20	140.588,79083
13	TRANSPORTE DE MATERIAL PETREO PARA ESTABILIZACION DE LA SUBRASANTE	m³/km	912.468,29	0,20	184.055,11024
III	CALZADA			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
14	MEJORAMIENTO DE LA SUBRASANTE CON SUELO SELECCIONADO	m ³	30.574,94	13,17	402.670,91152
15	SUB-BASE CLASE II	m ³	18.246,53	11,25	205.221,53809
	BASE CLASE I TRANSPORTE DE MATERIAL DE MEJORAMIENTO	m ³	14.267,00	11,25 0,20	160.463,15019
17 18	TRANSPORTE DE MATERIAL DE MEJORAMIENTO TRANSPORTE DE MATERIAL DE SUB-BASE CLASE II	m³/km m³/km	535.367,20 319.496,74	0,20	107.911,89142 64.446,08360
19	TRANSPORTE DE MATERIAL DE BASE CLASE I	m³/km	247.389,78	0.20	49.901,29929
20	GEOTEXTIL PARA ESTABILIZACION DE SUB-RASANTE	m ²	76.106,70	1,75	133.186,72500
	ACERAS DE HORMIGON				
21	ACERA HORMIGÓN SIMPLE e=12cm	m ²	16.450,00	17,45	287.035,92843
22	SUMINISTRO E INSTALACIÓN DE JUNTAS DE DILATACIÓN	m	6.632,06	2,84	18.831,30843
V 26	PARADERO SUMINISTRO E INSTALACIÓN DE TUBO REDONDO ACERO ESTRUCTURAL A500	kg	2.720,64	4,18	11.372,27520
	REPARACIONES POR AFECTACIONES	^X	2.720,04	4,10	11.372,27320
	HORMIGON SIMPLE PLINTOS f c = 210 Kg/cm2	m ³	27,86	193,42	5.388,62846
38	HORMIGON SIMPLE RIOSTRAS, F'C = 210 KG/CM2	m ³	21,20	212,80	4.511,42586
39	HORMIGON SIMPLE EN COLUMNAS F'C = 210 KG/CM2	m ³	17,56	205,06	3.600,86426
43	MAMPOSTERÍA DE BLOQUE DE MACIZO 40X20X7 cm.	m ²	1.248,50	12,78	15.950,54135
VIII	ENLUCIDO LISO DRENAJE	m ²	1.491,50	8,14	12.139,45452
51	HORMIGÓN SIMPLE DE f c=210 kg/cm2	m ³	102,53	196,50	20.147,55245
52	ACERO DE REFUERZO, fy=4200 kg/cm2	kg	18.997,13	2,02	38.374,20260
53	CUNETAS - BORDILLO; F°C= 210 kg/cm2; V= 0.141 M3/ML	m	7.296,79	26,56	193.831,43338
IX	SEÑALIZACION				
75 79	MARCAS DE PAVIMENTO CONTINUO a=0.10 m PINTURA DE ALTO TRÁFICO (CICLOVÍA EN PAVIMENTO)	m	14.000,00	1,04	14.538,80434
85	GUARDAVÍAS DOBLE	m² m	9.360,16 132,00	7,20 80,08	67.393,15200 10.570,94343
	RED DE DISTRIBUCION DE AGUA POTABLE	m	132,00	80,08	10.370,94343
90	TRAZADO, REPLANTEO Y NIVELACIÓN	m	5.486,19	1,27	6.967,46130
91	EXCAVACIÓN MECANICA DE ZANJAS SUELO COMÚN DE 0-2 M.	m ³	3.390,46	2,35	7.956,17359
92	RASANTEO EN FONDO DE ZANJA	m ²	3.390,46	1,63	5.536,63203
93	COLCHÓN DE ARENA	m ³	1.121,76 1.060.90	9,90	11.103,41034
94 95	SUM. E INST. TUBERIA PVC DE 315MM, 1 MPA U/Z SUM. E INST. TUBERIA PVC DE 160MM, 1 MPA U/Z	m	1.060,90 559,39	74,67 27,03	79.221,11834 15.121,60819
97	SUM. E INST. TUBERIA PVC DE 100MM, 1 MPA U/Z	m	1.853,91	9,40	17.430,55912
131	RELLENO COMPACTADO CON MATERIAL DE EXCAVACIÓN	m ³	2.373,33	3,51	8.328,53377
	SISTEMA DE AGUAS RESIDUALES				
=	RED PRINCIPAL TRAMO 00+000 HASTA 00+400				
	RELLENO DE ZANJAS CON MATERIAL DE EXCAVACIÓN SELECCIONADO	m ³	263,02	6,07	1.597,83466
	RELLENO DE ZANJAS CON MATERIAL DE MEJORAMIENTO EMISARIO DESDE BOMBEO HASTA LAGUNA DE OXIDACIÓN	m ³	219,19	17,93	3.930,06063
167	RELLENO DE ZANJAS CON MATERIAL DE MEJORAMIENTO	m³	291,60	17,85	5.205,03329
177	HORMIGÓN SIMPLE DE f c=210 kg/cm2	m ³	16,84	234,61	3.950,80990
178	ACERO DE REFUERZO, fy=4200 kg/cm2	kg	1.336,36	2,02	2.699,44720
143	SUMINISTRO E INSTALACIÓN DE TUBERÍA PERFILADA E/C D=220MM.	m	547,96	21,64	11.860,26020
XVI	SISTEMA ELECTRICO				
199	TENDIDO, AMARRE, ENTUBADO DE CONDUCTOR COBRE #2 AWG -XLPE- 15KV ENMALLADO	m	2.000,00	11,28	22.560,00000
204	PROVISION Y MONTAJE DE POSTE SECCIONADO METALICO 11 MTS BASE 4 °	u	238,00	1.104,06	262.765,22272
	PLAN DE MEDIDAS AMBIENTALES		200,00	2.254,00	202,700,22272
224	AGUA PARA CONTROL DE POLVO	m³	1.980,00	3,78	7.484,40000
225	ESCOMBRERA. (RECONFORMACIÓN CON MATERIAL EXCEDENTE)	m^3	114.830,27	0,52	59.429,17066
				TOTAL	3.686.150,46

Elaborado por: Kevin Chavez – Alex Pallo.

4.19 Tablas Comparativas sobre la Consultora y Autores

Posteriormente, se ubicará tablas comparativas para la observación de los resultados obtenido por parte de la consultora y los autores

 Cuadro de resultados del TPDA proyectado a 20 años por parte de la consultora.

TIPO DE VEHICULOS	CANTIDAD	TOTAL	%	INCREMENTO	TRÁFICO FUTURO 20 AÑOS
VEHÍCULOS LIVIANOS	1.492	1.492	85,26%	1.940	3.320
BUSES Y CAMIONES PEQUEÑOS TIPO 2DA	30	30	1,71%	39	67
VOLQUETAS Y CAMIONES TIPO 2DB	30	30	1,71%	39	67
TIPO 3A(TANDEM)	131	131	7,49%	170	291
TIPO 4C (TRIDEM)	52	52	2,97%	68	116
282	8	8	0,46%	10	18
383	7	7	0,40%	9	16
Total vehículos	1.750	1.750	100,00%	2.275	3.894

La proyeccion de los vehiculos a 20 años por parte de la entidad consultora, establece una cantidad de vehiculos de 3894 vehiculos mixtos/diarios

 Cuadro de resultados del TPDA proyectado a 20 años por parte de autores.

TIPO DE VEHICULOS	CANTIDAD	PORCENTAJE	TRAFICO PROYECTADO A 20 AÑOS	INCREMENTO
LIVIANOS	3494	80%	6398	2904
BUSES	263	6%	744	481
CAMIONES PEQUEÑOS 2DA	286	7 %	1044	758
CAMIONES 2DB	164	4%	599	435
TIPO 3A	103	2%	378	275
TIPO 2S2	8	0,2%	32	24
TIPO 3S2	10	0,2%	39	29
TIPO 3S3	13	0,3%	51	38
TOTAL	4341	100%	9274	4933

Por parte de los autores, se determinó una proyección de vehículos a 20 años, la cantidad de **9274 vehículos mixtos/** diarios.

 Cuadro de resultados del diseño del pavimento flexible por parte de la consultora.

ESPESORES	pulg	cm
Carpeta Asfaltica	4	10
Base	8	20
Subbase	8	20
Mejoramiento	14	35
TOTAL	34	85

Por parte de la entidad, proponen una excavación de 85 cm, con sus respectivos espesores, para el diseño del pavimento flexible.

 Cuadro de resultados del diseño del pavimento flexible por parte de autores.

ESPESORES	Pulg	cm		
Carpeta Asfáltica	4	10		
Base	8	20		
Subbase	10	25		
Mejoramiento	12	30		
TOTAL	34	85		

Por parte de los autores, presentan una excavación para el diseño del pavimento flexible de 85 cm, con espesores similares al de la consultora.

 Cuadro de resultados del diseño Geométrico por parte de la consultora.

Diseño Geométrico Propuesto por la consultora							
Clasificación de la vía proyectada a 20 años con un TPDA de 3894 vehículos mixtos y terreno llano.	Clase I						
Velocidad de diseño	60 km/h						
Radio mínimo	225 m						
Radio recomendado	415 m						
Gradiente de longitud máxima	4%						
Gradiente de longitud mínima	0.5%						
Peralte máximo – urbano plana	6 %						
Ancho de calzada	7.20 m						
Pendiente transversal de la calzada	2%						
Pendiente transversal de espaldones	2%						

El diseño geométrico por parte de la consultora propone las siguientes características para la vía, por lo que hacen falta algunas especificaciones.

 Cuadro de resultados del diseño Geométrico por parte de autores.

Diseño Geométrico Propuesto por los Autores.							
Clasificación de la vía proyectada a 20 años con un TPDA de 9274 vehículos mixtos y terreno llano.	Clase R - I o R - II						
Velocidad de diseño	100 km/h						
Velocidad de circulación	60 km/h						
Distancia de visibilidad de parada	206 m						
Radio mínimo	350 m						
Radio recomendado	415 m						
Gradiente de longitud máxima	3%						
Gradiente de longitud mínima	0.5%						
Gradiente transversal de espaldones y calzada	2%						
Peralte máximo	10 %						
Peralte mínimo recomendado por el sitio	6%						
Ancho de calzada	7.20 m						
Ancho de espaldones (exteriores)	1.50 m						
Ancho de espaldones (interiores)	1.20 m						
Cunetas pendiente longitudinales	0.20%						
Secciones de cunetas típicas (triangular)	0.20 X 0.50 m						

El diseño geométrico por parte de los autores, posee los siguientes parámetros establecidos de mejor manera para la carretera.

Cuadro de resultados de los rubros con los costos de Mano de Obra, Rendimientos, Tarifas de equipos y Precios
 Unitarios, sobre los rubros más predominantes por parte de la Consultora y Autores.

Analisis de rubros importantes										
Rubro	Unidad	Unidad Mano Obra		Rendimiento (h/u) Tar		Tarifa E	Tarifa Equipo (H)		Jnitario	Observacion
Kubio	Onidad	Entidad	Autores	Entidad	Autores	Entidad	Autores	Entidad	Autores	Observacion
Excavacion sin clasificar (6)	m3	0,43857	0,32000	0,38170	0,02778	40,00	45,00	3,32	2,58	EQ-Excavadora
EXCAVACION EN FANGO (7)	m3	0,57639	0,37663	0,05128	0,03333	40,00	45,00	4,12	2,87	EQ-Excavadora
Estabilizacion con material petreo (8)	m3	0,23085	0,09745	0,01000	0,01000	70,00	0,00	11,66	9,95	EQ- 1 Tractor. 1 Motoniv. y tanquero, no va
Material de prestamo importado, tendido y compactado (10)	m3	0,18386	0,70703	0,00658	0,00658	145,80	0,00	4,21	2,84	EQ-2 Tractores no va
TRANSPORTE DE MATERIAL DE PRÉSTAMO IMPORTADO (12)	m3/km	0,02518	0,02214	0,00476	0,00417	35,00	35,00	0,24	0,20	EQ: Volqueta
MEJORAMIENTO DE LA SUBRASANTE CON SUELO SELECCIONADO (14)	m3	0,12445	0,12497	0,00714	0,00714	115,00	107,00	11,75	13,17	EQ:Motoniveladora,R odillo y tanquero
SUBBASE CLASE II (15)	m3	0,50218	0,15549	0,02315	0,00714	115,00	107,00	14,09	11,25	EQ:Motoniveladora,R odillo y tanquero
BASE CLASE I (16)	m3	0,53466	0,15549	0,02442	0,00714	115,00	107,00	14,52	11,25	EQ:Motoniveladora,R odillo y tanquero
ACERA DE HORMIGON SIMPLE e 12 cm (21)	m2	7,56811	4,56764	0,2835	0,17021	20,00	20,00	24,06	17,45	EQ: MIXER AUTOCARGABLE

CAPÍTULO V

Conclusiones y Recomendaciones

5.1 Conclusiones

Por último, luego de realizar el debido proceso de análisis, técnico, económico y determinación de cálculos necesarios propuesto por parte de los autores, podemos culminar con las siguientes conclusiones.

- La vía Santa Rosa Puerto Jelí, es reconocida por llevar a los usuarios a disfrutar de la gastronomía del sector y la pesca de mariscos, por lo que, al pasar los años, dicha carretera no ha tenido el mantenimiento suficiente para soportar las cargas de los vehículos que transitan por la misma, provocando el deterioro del pavimento el cual genera el incremento del congestionamiento vehicular.
- Según el estudio de tráfico realzado antes de que inicie el presente trabajo de titulación, han determinado un TPDA Proyectado a 20 años de 3894 vehiculos mixtos/diarios, según las normas de Diseño Geometrico para Carreteras en el Ecuador (MTOP,2003) clasifica a la via como Clase I, por lo tanto, la carretera no debe tener una ampliacion a 2 calzadas, puesto que el volumen vehicular se encuentra alejado a los 8000 vehiculos mixtos/diarios, como lo especifica la norma guia.
- El estudio de tráfico elaborado por los autores, se determinó que, el TPDA
 Proyectado a 20 años es de 9274 vehiculos mixtos/diarios, clasificando a la
 via como Clase R I o R II, aprobando y justificando de esta manera la
 ampliacion a 2 calzadas de la via Santa Rosa Puerto Jelí.

- Como se podra apreciar en los Anexos, los estudios de suelo realizados por la
 consultora y los autores, poseen las mismas caracteristicas del suelo, mediante
 muestras a diferentes profundidades de 0.50 m, 1.0 m y 1.5 m. por lo tanto, se
 ha concluido que el valor del CBR de diseño es de 4.5 % caracterizado como
 una subrasante pobre.
- Se ha concluido que el diseño geométrico propuesto por la consultora no se encuentra bien determinado, puesto que no cumple con las especificaciones dispuestas por la norma guía (MTOP 2003). Por lo tanto, los autores hemos dispuesto que la vía está catalogada como Clase R I o R II con un relieve Llano, por lo que se debe considerar una velocidad de diseño entre 60 a 100 km/h y deberá poseer un radio de curvatura mayor o igual a 415 m, con un peralte de diseño del 6%, garantizando de esta manera que los conductores no tengan dificultades al momento de tomar la curva.
- Utilizando el método de TALBOT se determinó un área hidráulica de 5.10 m², por ende, la alcantarilla existente (ducto cajón) de 1.30X1.60m no cumple con el área hidráulica requerida. Por lo tanto, se ha concluido que se necesitara implementar más alcantarillas de drenaje vial, para de esta manera evacuar el cauce de aportación de la carretera.
- Al realizar el dimensionamiento de los espesores del pavimento flexible mediante el programa AASHTO 93, se ha concluido que los espesores para un diseño óptimo con vida útil de 20 años son los siguientes: carpeta asfáltica = 10 cm, Base = 20 cm, Subbase = 25 cm y mejoramiento = 30 cm. Teniendo en cuenta que los autores consideran una diferencia de hasta el 5% de los números estructurales (SN) para el diseño del pavimento flexible.

- Actualmente la vía en estudio cuenta con un nivel de servicio tipo C, al ser intervenida en ampliar la vía de una a dos calzadas, su nivel de servicio será de tipo A, por lo que se concluye que la ampliación mejorará el nivel de servicio de la vía Santa Rosa – Puerto Jelí.
- Al realizar el análisis de los rubros del presupuesto por parte de la consultora, se ha concluido que algunos APUS poseen inconsistencias al momento de ser elaborados como son: equipos, mano de obra, costo horario y rendimiento. afectando al precio unitario correspondiente y así aumentando el presupuesto de la obra.

5.2 Recomendaciones

Los autores del presente trabajo de titulación efectúan las siguientes recomendaciones:

- Es conveniente que las entidades encargadas del estudio de una carretera, deben constar con un personal responsable al efectuar los estudios correspondiente como: tráfico vehicular y estudios de suelo, de manera que, se tenga la certeza que los datos tomados in situ no sean alterados, evitando que las consultoras propongan un mal diseño.
- Al realizar un estudio de tráfico, se debe verificar que los datos obtenidos por cualquier entidad sean actualizados, debido que, al momento de realizar los cálculos necesarios para la vía no afecten en su clasificación ni en su diseño geométrico, puesto que retrasarían los trabajos y afectaría al presupuesto inicial.
- Se recomienda que el radio para la curva horizontal que inicia en la abscisa 2+600, sea de **415 m**, debido que, el radio propuesto por la consultora no

cumple con los factores de diseño establecidos por la MTOP. Garantizando de esta manera que los usuarios no tengan accidentes al momento de tomar la curva.

- se recomienda implementar 5 alcantarillas tipo ducto cajón con dimensiones de 1.20X1.20m, ubicadas cada 500 m.
- Se sugiere que al diseñar una carretera de cualquier función (corredor arterial, colectora o vecinal), deban cumplirse con las normativas que especifiquen las variables o parámetros de diseño como, las Normas de Diseño Geométrico de Carreteras del Ecuador (MTOP, 2003), y otros autores más, que especifican los componentes mínimos como, Velocidades, Radios, Drenaje, etc.

Bibliografía

NORMA TECNICA ECUATORIANA. (2010) Clasificación Vehicular (INEN).

AASHTO. (1993). Design of Paviment Structures. American Association of state highway and Transportation Officials».

Tapia, A. J. & Veizaga, B. R. (2006). Apoyo didáctico para la enseñanza y aprendizaje de la asignatura de Ingeniería de Tráfico

Agudelo, O. J. (2002). DISEÑO Geométrico de Vías - Ajustado al Manual Colombiano. AASHTO. (1993). DISEÑO DE ESTRUCTURAS DE PAVIMENTO español».

AASHTO (1993). DISEÑO DE PAVIMENTO METODO AASHTO 93 ESP.

Cárdenas, G. J. (2003). Diseño Geométrico de Carreteras ECOE EDICIONES.

Corredor, M. G. (2014). Experimento Vial de la AASHO y las Guías AASHTO.

Cal, R., & Mayor. (2006). INGENERIA DE TRANSITO FUNDAMENTO Y APLICACIONES. Alfaomega.

Cal, R., & Mayor. (2017). Ingeniería de tránsito Fundamento y Aplicaciones, 9na Edición.

Varga, V. W. Rincón, V. M. & González, V. C. (2012) *Ingeniería de Tránsito:* Conceptos Básicos - Universidad Distrital.

Ministerio de Transportes y Comunicaciones Perú (2013) Manual De Carreteras, Suelos, Geología, Geotecnia Y Pavimentos.

INSTITUTO NACIONAL DE ESTADISTICAS Y CENSOS (2013) Encuesta de Transportes 2013 (INEC).

MTOP. (2003). Ministerio de Transporte y Obras Publicas - Normas de Diseño Geométrico.

Sánchez, S. F. (2016). Módulo 1: Introducción al Diseño de Pavimentos.

Torrealba, S. (2015). Proyecto vial I: proyecto de carreteras.

Das, B. M. (2011). *Principles of foundation engineering*. Stamford, CT: Cengage Learning.

Hernández, V. H. (2013). Programas de monitoreo de tráfico.

Rodríguez, V. E. (2009). CÁLCULO DEL ÍNDICE DE CONDICIÓN DEL PAVIMENTO FLEXIBLE EN LA AV. LUIS MONTERO, DISTRITO DE CASTILLA.

Nevi-2B. (2013). Norma Ecuatoriana Vial Volumen 2 libro B. *Normas para Estudios y Diseños vial.*

CONSTRUMATICA. (2012, 02 23). Retrieved from https://www.construmatica.com/construpedia/Ensayo_CBR

CUEVA DEL INGENIERO CIVIL. (2019, 05 29). Retrieved from https://www.cuevadelcivil.com/2010/05/ejes-equivalentes.html

Etimologia de Chile. (2021, 07 14). Retrieved from http://etimologias.dechile.net/?macadam

Gardey, J. P. (2019). Definicion.De. Retrieved from https://definicion.de/serrania/INGENIERIA CIVIL. (2011, 09 13). Retrieved from https://bit.ly/2XyRcIP Merino, J. P. (2009). Definición.De. Retrieved from https://definicion.de/jerarquia/OxfordLanguajes. (2020). Retrieved from https://bit.ly/3AZZiIZ OxfordLanguajes. (2020). Retrieved from https://bit.ly/2XKW0uX REAL ACADEMIA ESPAÑOLA. (2020). Retrieved from https://dle.rae.es/apisonar REAL ACADEMIA ESPAÑOLA. (2020). Retrieved from https://dle.rae.es/calzada REAL ACADEMIA ESPAÑOLA. (2020). Retrieved from https://dle.rae.es/incaico REAL ACADEMIA ESPAÑOLA. (2020). Retrieved from https://dle.rae.es/cuantificar Significado.com. (2016, 07 27). Retrieved from https://www.significados.com/aforo/

Significados.com. (2019, 02 15). Retrieved from https://www.significados.com/relieve/

ANEXOS

Anexo 1: Estado actual de la vía Santa Rosa - Puerto Jelí.

Anexo 2: Alcantarilla existente (ducto cajón).

Anexo 3: Estaciones de conteo vehicular en la vía Santa Rosa - Puerto Jelí.

Anexo 4: Formato de conteo vehicular manual.

	CONTEO DE TRAFICO CONSULTORÍA PARA ELABORACION DE ESTUDIOS Y DISEÑOS DEFINITIVOS DE LA VIA: SANTA ROSA - PUERTO JELI, DEL CANTON SANTA ROSA, PROVINCIA DE EL ORO CONTIENE:Estudio de Trafico Levantamientos de Conteos Volumétricos y Clasificación vehicular													
ESTACION 1:			F	stacion 1:		DIA CONTEO:			FECHA:					
DIRECCION:				DSA - PUERTO JELI		DIA CONTEO.			LUIN					
DIRECCIONI														
		LIVIANOS		BU	USES					CAMIONES				
	Moto Automóvil Camioneta Buseta Bus 2DA 2DB 3A 3S1 2S1 2S2 3S2 3S3					3\$3								
HORA	***		1						() = () = ()	11 10507 PC		W-101-100	\$ 100 m	TOTAL
05h00 06h00														
06h00 07h00														
07h00 08h00														
08h00 09h00														
09h00 10h00														
10h00 11h00														
11h00 12h00														
12h00 13h00														
13h00 14h00														
14h00 15h00														
15h00 16h00														
16h00 17h00														
17h00 18h00														
18h00 19h00														
19h00 20h00														
20h00 21h00														
21h00 22h00														
22h00 23h00														
23h00 24h00														
24h00 01h00														
01h00 02h00														
02h00 03h00 03h00 04h00														
04h00 05h00														
Suman														

Anexo 5: TPDS condesado en 2 direcciones y TPDA asignado

TPDS CONDESANDO EN 2 DIRECCIONES.

		LIVIA	NOS	BUS	SES				CAMI	ONES				
	DIA DE LA	Automóvil	Camioneta	Buseta	Bus	2D	2DB	ЗА	351	251	252	352	353	
FECHA	SEMANA		1				al.	A.	4		£	00 00 mm	B	TOTAL
10/6/2021	JUEVES	1412	916	166	16	221	103	38	0	0	7	7	3	2889
11/6/2021	VIERNES	1545	1111	166	20	207	126	92	0	0	0	2	11	3280
12/6/2021	SABADO	1628	1131	147	43	175	97	38	0	0	0	5	6	3270
13/6/2021	DOMINGO	1247	862	161	24	177	53	0	0	0	0	2	2	2528
TOT	AL	5832	4020	640	103	780	379	168	0	0	7	16	22	11967
TPI	DS	1467	1009	163	23	204	104	52	0	0	3	5	7	3037
%ТР	DS	48%	33%	5%	1%	7%	3%	2%	0%	0%	0,10%	0,16%	0,23%	100%
	COMPOSICION DEL TRAFICO %		2%	6	%	12%						100%		
CONDENSADO EN 2 DIRECCIONES														

TPDA ASIGNADO

		LIVIA	ANOS	BU	SES				CAM	ONES				
		Automóvil	Camioneta	Buseta	Bus	2DA	2DB	ЗА	351	251	252	352	353	
FECHA	DIA DE LA SEMANA		19 to			aC.	gC.l	A	4	82,020	£	SC007~ 100	B-000-000	TOTAL
10/06/2021	JUEVES	1412	916	166	16	221	103	38	0	0	7	7	3	2889
11/06/2021	VIERNES	1545	1111	166	20	207	126	92	0	0	0	2	11	3280
12/06/2021	SABADO	1628	1131	147	43	175	97	38	0	0	0	5	6	3270
13/06/2021	DOMINGO	1247	862	161	24	177	53	0	0	0	0	2	2	2528
	TOTAL	5832	4020	640	103	780	379	168	0	0	7	16	22	11967
	TPDS	1467	1009	163	23	204	104	52	0	0	3	5	7	3037
DESVIACIO	N ESTÁNDAR MUESTRAL(S)	166,44	135,99	8,98	11,95	22,69	30,51	37,84	o	o	3,50	2,45	4,04	424,40
	ESTIMADOR DE LA DESVIACION ESTANDAR POBLACIONAL (E)		67,72	4,47	5,95	11,30	15,19	18,84	o	o	1,74	1,22	2,01	211,32
	K= 85 %							1,39						
	A=K*E	115,36	94,26	6,23	8,29	15,72	21,15	26,23	0	0	2,43	1,70	2,80	294,16
	TPDA= TPDS + A	1583	1104	170	32	220	126	79	0	0	6	7	10	3337
	TPDA ASIGNADO	2058	1436	221	42	286	164	103	o	o	8	10	13	4341
1	TPDA ASIGNADO	34	94	20	63	584								4341
FACTORES DE	FACTORES DE EQUIVALENCIA A VEHICULOS LIVIANOS		1	1	2					2,4				
TPDA ASIGNADO (VEHICULOS LIVIANOS EQUIVALENTES)		2058	1436	442	84	687	394	248	o	o	20	24	32	5425
TPDA ASIGNADO (VEHICULOS LIVIANOS EQUIVALENTES)		34	94	52	26				14	105				5425

LIVIANOS

	TPDA PROYECTADO									
		LIVIA	NOS							
# AÑO	Periodo	Vehiculos	r	n	Total					
1	2021-2022	3494	3,75%	1	3626					
2	2022-2023	3494	3,75%	2	3761					
3	2023-2024	3494	3,75%	3	3902					
4	2024-2025	3902	3,37%	1	4034					
5	2025-2026	3902	3,37%	2	4170					
6	2026-2027	3902	3,37%	3	4310					
7	2027-2028	3902	3,37%	4	4456					
8	2028-2029	3902	3,37%	5	4606					
9	2029-2030	4456	3,06%	1	4593					
10	2030-2031	4456	3,06%	2	4733					
11	2031-2032	4456	3,06%	3	4878					
12	2033-2034	4456	3,06%	4	5027					
13	2034-2035	4456	3,06%	5	5181					
14	2035-2036	4456	3,06%	6	5340					
15	2036-2037	4456	3,06%	7	5503					
16	2037-2038	4456	3,06%	8	5672					
17	2038-2039	4456	3,06%	9	5845					
18	2039-2040	4456	3,06%	10	6024					
19	2040-2041	4456	3,06%	11	6208					
20	2041-2042	4456	3,06%	12	6398					

BUSES

	TPDA PROYECTADO									
		BUSI	ES							
# AÑO	Periodo	Vehiculos	r	n	Total					
1	2021-2022	526	1,99%	1	537					
2	2022-2023	526	1,99%	2	548					
3	2023-2024	526	1,99%	3	559					
4	2024-2025	559	1,80%	1	570					
5	2025-2026	559	1,80%	2	580					
6	2026-2027	559	1,80%	3	590					
7	2027-2028	559	1,80%	4	601					
8	2028-2029	559	1,80%	5	612					
9	2029-2030	612	1,63%	1	622					
10	2030-2031	612	1,63%	2	633					
11	2031-2032	612	1,63%	3	643					
12	2033-2034	612	1,63%	4	653					
13	2034-2035	612	1,63%	5	664					
14	2035-2036	612	1,63%	6	675					
15	2036-2037	612	1,63%	7	686					
16	2037-2038	612	1,63%	8	697					
17	2038-2039	612	1,63%	9	708					
18	2039-2040	612	1,63%	10	720					
19	2040-2041	612	1,63%	11	732					
20	2041-2042	612	1,63%	12	744					

PESADO (2DA)

TPDA PROYECTADO PESADOS 2DA # AÑO Periodo Vehiculos n Total 2021-2022 2,24% 2022-2023 2,24% 2023-2024 2,24% 2024-2025 2,24% 2025-2026 2,22% 2026-2027 2,22% 2,22% 2027-2028 2028-2029 2,22% 2029-2030 2,22% 2030-2031 2,02% 2031-2032 2,02% 2033-2034 2,02% 2034-2035 2,02% 2035-2036 2,02% 2036-2037 2,02% 2037-2038 2,02% 2038-2039 2,02% 2039-2040 2,02% 2040-2041 2,02% 2041-2042 2,02%

PESADO (2DB)

TPDA PROYECTADO										
		PES/	ADOS 2DB							
# AÑO	Periodo	Vehiculos	r	n	Total					
1	2021-2022	394	2,24%	1	403					
2	2022-2023	394	2,24%	2	412					
3	2023-2024	394	2,24%	3	422					
4	2024-2025	422	2,24%	1	432					
5	2025-2026	422	2,22%	2	441					
6	2026-2027	422	2,22%	3	451					
7	2027-2028	422	2,22%	4	461					
8	2028-2029	422	2,22%	5	471					
9	2029-2030	471	2,22%	1	482					
10	2030-2031	471	2,02%	2	491					
11	2031-2032	471	2,02%	3	501					
12	2033-2034	471	2,02%	4	511					
13	2034-2035	471	2,02%	5	521					
14	2035-2036	471	2,02%	6	532					
15	2036-2037	471	2,02%	7	542					
16	2037-2038	471	2,02%	8	553					
17	2038-2039	471	2,02%	9	564					
18	2039-2040	471	2,02%	10	576					
19	2040-2041	471	2,02%	11	587					
20	2041-2042	471	2,02%	12	599					

PESADO (3 A)

TPDA PROYECTADO									
		PE	SADOS 3A						
# AÑO	Periodo	Vehiculos	r	n	Total				
1	2021-2022	248	2,24%	1	254				
2	2022-2023	248	2,24%	2	260				
3	2023-2024	248	2,24%	3	266				
4	2024-2025	266	2,24%	1	272				
5	2025-2026	266	2,22%	2	278				
6	2026-2027	266	2,22%	3	285				
7	2027-2028	266	2,22%	4	291				
8	2028-2029	266	2,22%	5	297				
9	2029-2030	297	2,22%	1	304				
10	2030-2031	297	2,02%	2	310				
11	2031-2032	297	2,02%	3	316				
12	2033-2034	297	2,02%	4	322				
13	2034-2035	297	2,02%	5	329				
14	2035-2036	297	2,02%	6	335				
15	2036-2037	297	2,02%	7	342				
16	2037-2038	297	2,02%	8	349				
17	2038-2039	297	2,02%	9	356				
18	2039-2040	297	2,02%	10	363				
19	2040-2041	297	2,02%	11	371				
20	2041-2042	297	2,02%	12	378				

PESADO (2S2)

TPDA PROYECTADO										
		PE	SADOS 2S2							
# AÑO	Periodo	Vehiculos	r	n	Total					
1	2021-2022	20	2,24%	1	21					
2	2022-2023	20	2,24%	2	21					
3	2023-2024	20	2,24%	3	22					
4	2024-2025	22	2,24%	1	23					
5	2025-2026	22	2,22%	2	23					
6	2026-2027	22	2,22%	3	24					
7	2027-2028	22	2,22%	4	25					
8	2028-2029	22	2,22%	5	25					
9	2029-2030	25	2,22%	1	26					
10	2030-2031	25	2,02%	2	27					
11	2031-2032	25	2,02%	3	27					
12	2033-2034	25	2,02%	4	28					
13	2034-2035	25	2,02%	5	28					
14	2035-2036	25	2,02%	6	29					
15	2036-2037	25	2,02%	7	29					
16	2037-2038	25	2,02%	8	30					
17	2038-2039	25	2,02%	9	30					
18	2039-2040	25	2,02%	10	31					
19	2040-2041	25	2,02%	11	32					
20	2041-2042	25	2,02%	12	32					

PESADO (3S2)

TPDA PROYECTADO PESADOS 3S2 # AÑO Periodo Vehiculos Total n 2021-2022 2,24% 2022-2023 2,24% 2023-2024 2,24% 2024-2025 2,24% 2025-2026 2,22% 2026-2027 2,22% 2027-2028 2,22% 2028-2029 2,22% 2029-2030 2,22% 2030-2031 2,02% 2031-2032 2,02% 2033-2034 2,02% 2034-2035 2,02% 2035-2036 2,02% 2036-2037 2,02% 2037-2038 2,02% 2038-2039 2,02% 2039-2040 2,02% 2040-2041 2,02% 2041-2042 2,02%

PESADO (3S3)

TPDA PROYECTADO									
~			SADOS 3S3						
# AÑO	Periodo	Vehiculos	r	n	Total				
1	2021-2022	32	2,24%	1	33				
2	2022-2023	32	2,24%	2	34				
3	2023-2024	32	2,24%	3	35				
4	2024-2025	35	2,24%	1	36				
5	2025-2026	35	2,22%	2	37				
6	2026-2027	35	2,22%	3	38				
7	2027-2028	35	2,22%	4	39				
8	2028-2029	35	2,22%	5	40				
9	2029-2030	40	2,22%	1	41				
10	2030-2031	40	2,02%	2	42				
11	2031-2032	40	2,02%	3	43				
12	2033-2034	40	2,02%	4	44				
13	2034-2035	40	2,02%	5	45				
14	2035-2036	40	2,02%	6	46				
15	2036-2037	40	2,02%	7	47				
16	2037-2038	40	2,02%	8	47				
17	2038-2039	40	2,02%	9	48				
18	2039-2040	40	2,02%	10	49				
19	2040-2041	40	2,02%	11	50				
20	2041-2042	40	2,02%	12	51				

Anexo 7: Toma de calicatas en la vía de estudio (lado izquierdo y derecho).

Anexo 8: Ensayos de suelo realizados en el laboratorio arnaldo rufilli

Anexo 9: Estudios de suelo realizado por la consultora.

	RESUMEN DE LAS PRO PIEDADES GEOTECNICAS DE LA SUBRASANTE														
			CLASIFICACION		LIMITES DE CONSISTENCI		STENCIA		% PAS	SANTE			DENSIDAD SECA		
САЦСАТА	PROFUND.	DESCRIPCION	sucs	AASHTO	IG%	Ц%	LP%	IP%	TAMIZ 4	TAMIZ 10	TAMIZ 40	TAMIZ 200	% HUM. OPTIMA	MAXIMA (Kg/m3)	% CBR
	0,15	GRAVA MAL GRADUADA CON ARENA CO	GP	A-1-b	-	-	-		29,3	27,05	15,8	4,81			
	0,5	ARCILLA MEDIA PLASTICIDAD	α	A-6	10	31,3	19,49	11,81	100	99,78	97,61	90,02			
1	1	ARCILLA ALTA PLASTICIDAD	СН	A-7-6	20	55,8	23,74	32,08	100	99,44	95,13	90,45	16,7	1780	1,35
	1,5	ARCILLA MEDIA PLASTICIDAD CON ARENA	SC	A-6	12	38	16,29	19,71	100	99,66	94,68	70,4			
	0,2	GRAVA MAL GRADUADA CON LIMO	GC-GM	A-1-a	-	-	-		35,8	32,27	19,65	8,14			
2	0,5	ARENA LIMOSA	SM	A-2-4			,		100	99,6	88,64	20,04	10.5	2023	4,13
	1	ARENA LIMOSA	SM	A-2-4	-	-	-	-	100	98,24	87,56	17,4	10,5		7,13
	1,5	ARENA MAL GRADUADA CON LIMO	SP-SM	A-3			,		100	99,8	77,66	6,94			
	0.2	GRAVA BIEN GRADUADA CON LIMO, ARENA CON BLOQUES	GW-GM	A-1-a			-	-	33,6	28,6	15,77	5,52			
3	0,5	ARENA ARCILLOSA	SC	A-2-7	3,00	42,00	18,48	23,52	100	99,36	86,26	34,29	10	1787	46,7
	1	ARENA MAL GRADUADA CON LIMO	SP-SM	A-2-4	-	-	-	-	100	99,84	71,86	11,88			
	1,5	ARENA ARCILLOSA	SC	A-2-4	-	23,00	15,29	7,71	100	100	89,16	33,1			
	0.2	GRAVA MAL GRADUADACON LIMO, ARENA CON BLOQUES	GP-GM	A-1-a	•	•	-		50,3	45,93	28,2	10,1			
4	0,5	ARENA ARCILLOSA	SC	A-2-6	1,00	32,80	12,31	20,49	100	99,8	87,84	22,36	8	1960	46
'	1	ARENA LIMOSA	SM	A-2-4	-	-	-		100	99,86	88,36	17,26		1960	
	1,5	ARCILLA ALTA PLASTICIDAD	СН	A-7-6	20,00	56,30	22,87	33,43	100	94,74	91,84	86,76			

Anexo 10: Estudios de suelo realizado por los autores (contenido de humedad).

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS ESCUELA DE INGENIERÍA CIVIL

Labor atorio de Suelos y Materiales Ing.Dr. Arnaldo Ruffilli Av. Kennedy s/n. y Av. Delta - Teléfono: 2281037

Fecha: 17/06/2021

	CONTENIDO DE HUMEDAD										
	LADO IZQUIERDO										
	Profundidad (m).	0,5	1	1,5							
	Recipiente No.	1	5	5							
7	Recipiente + Peso Humedo	1180,0	407,2	1021,8							
1	Reciente + Peso Seco	989,7	337	819,7							
en	Agua (Ww)	190,3	70,2	202,1							
Peso	Peso de Recipiente	92,5	21,2	62,8							
P	Peso Seco (Ws)	897,2	315,8	756,9							
	Contenido de Agua (W%)	21,21	22,23	26,70							
	LADO DEREC	НО									
	Profundidad (m).	1	1	1,5							
	Recipiente No.	10	E	L							
79	Recipiente + Peso Humedo	1762,9	927,7	1148,0							
	Reciente + Peso Seco	1603,8	736,8	887,2							
en	Agua (Ww)	159,1	190,9	260,8							
Peso	Peso de Recipiente	96,2	94,4	98,9							
P	Peso Seco (Ws)	1507,6	642,4	788,3							
	Contenido de Agua (W%) 10,55 29,72 33,08										

Anexo 11: Estudios de suelo realizado por los autores (granulometría, límites de atterberg y clasificación Sucs y aashto - lado derecho)

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS INGENIERÍA CIVIL

Laboratorio de Suelos y Materiales Ing.Dr.Amaldo Ruffilli Av.Kennedy s/n. y Av. Delta - Teléfono: 2281037

GRANULOMETRÍA

MUESTRA: CALICATA DERECHO FECHA: 9 DE JULIO DEL 2021 PROFUNDIDAD: 1.5m

TAMIZ	PESO PARCIAL	% RETENIDO	% RETENIDO ACUMULADO	% PASANTE ACUMULADO
1/4"				
No. 4	11,50	1,46	1,46	98,54
No. 8	5,60	0,71	2,17	97,83
No. 10	1,60	0,20	2,37	97,63
No. 16	7,3	0,93	3,30	96,70
No. 20	7,4	0,94	4,24	95,76
No. 30	12,90	1,64	5,87	94,13
No. 40	35,50	4,50	10,38	89,62
No. 50	13,90	1,76	12,14	87,86
No. 60	13,8	1,75	13,89	86,11
No. 100	5,80	0,74	14,63	85,37
No.200	4,3	0,55	15,17	84,83
FONDO	668,70	84,83	100,00	0,00
TOTAL	788,30			

L	IMITES DE ATTERBER	RG	CLASIFIC	IG	
LIM ITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO	ASSHTO	Ю	
50%	26%	24%	A-7-6	CL	16%

Anexo 12: Estudios de suelo realizado por los autores (ensayo Proctor lado derecho)

C	>			UNI	VERSID	AD DE G	UAYAQ	UIL			MAT	IMATICAS
			Fac	cultad de ESC	Cienci UELA D	as Matem E INGEN	náticas y IERIA C	/ Físicas IVIL			CHAIN	
					PRUEE	A DE PRO	CTOR					
VOLUMEN DI	EL CILINDRO:	0	,000944	m,								
PESO DEL CI	ILINDRO:		4,240	kg								
NUMEROS D	E GOLPES POR CA	PA:	2	25				MUESTR	A: LADO DEREC	но		
NUMERO DE	CAPAS			5				PROFU	NDIDAD: 1,5	n		
CANTIDAD DE ACUA	RE CIPE NTE	PE SO TE RRA HUME DA +RE CIPIE NTE	TE RRA SE CA+ RE CIPIE NTE	PESO DE RECIPIENTE	PE SO DE ACUA	PE 30 3E CO	w	PESOTERRA+ CILINDRO	PE SO TE RRA HUME DA WA	1+w/100	PISO TERRA SECA	DE NEEDAD SE CA
cm ³	N°	grs	grs	grs	grs	grs	%	lg	lg		kg	kg/m ³
0	PR	330,3	315,50	22,60	14,80	292,90	5,05	5,674	1,434	1,051	1,365	1446
100	V	285,3	260,80	30,50	24,50	230,30	10,64	5,893	1,653	1,106	1,494	1583
200	L	334,2	294,50	21,70	39,70	272,80	14,55	6,007	1,767	1,146	1,543	1634
300	II	359,6	305,90	30,20	53,70	275,70	19,48	5,990	1,750	1,195	1,465	1552
	1 Densidad Kg/m 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	640 620 600 580 550 540 550 480 480 440 440 420 0,00 2	,00 4,0	144		10,00	1583 1200 nido de Hur	-,	5,00 18,0		552 00 22,00	
		O NATURAL O ÓPTIMO D					5,05 14,55		%			
	DENSIDAI	SECA MÁ	XIMA:				1634	+	kg/m²			

Anexo 13: Estudios de suelo realizado por los autores (densidad CBR - lado derecho)

			NCIAS MATEMÁTIC DE INGENIERIA C		MATEMATICAN
		3.R. ·	· DENSIDAI		0.00040
LALIC	ATA:Lado Derecho	NITEC	Prof: 1,5 m.	Vol.del Espec.(m3)	0,002316
		ANTES	DE LA INMERSIO		
			12 Golpes x capa	25 Golpes x capa	56 Golpes x cap
	Recipiente N°		L	D1	04
9	Wh + Recipiente.		297,8	312,5	324,5
HUMEDAD	Ws + Recipiente.		263,2	275,7	287,7
闄	Ww		34,6	36,8	36,8
≘	Wrecipiente		23,3	25,5	29,7
_	Wseα		239,9	250,2	258
	W% (porcentaje de humedad)		14,423	14,708	14,264
	de Molde + Suelo Húmedo		10,623	10,978	11,145
	de Molde		6,378	6,663	6,814
	del Suelo Húmedo.	Wh	4,245	4,315	4,331
	del Suelo Seco.	Ws	3,710	3,762	3,790
	do de agua=Wh / 1+ 0,01W%	W%	14,423	14,708	14,264
	dad Húmeda= Wh/Volum.	δh	1833	1863	1870
Densid	lad Seca= Dh / 1+ 0,01W%.	δs	1602	1624	1637
	DI	SPUE	<u>s de la inmer s</u>		
			12 Golpes x capa	25 Golpes x capa	56 Golpes x ca
	Recipiente N°		2	11	15
9	Wh + Recipiente.		289,2	246,6	371,7
HUMEDAD	Ws + Recipiente.		202,4	183,3	299,9
Æ	Ww		86,8	63,3	71,8
5	Wrecipiente		24,4	26,9	62
I	Wseco		178	156,4	237,9
	W% (porcentaje de hum edad)		48,764	40,473	30,181
oeso d	de Molde + Suelo Húmedo		11,681	11,782	11,660
oeso d	le Molde		6,378	6,663	6,814
oeso d	del Suelo Húmedo.	Wh	5,303	5,119	4,846
eso d	del Suelo Seco.	Ws	3,565	3,644	3,723
Coneti	do de agua=Wh / 1+ 0,01W%	W%	48,764	40,473	30,181
Densid	dad Húmeda= Wh/Volum.	δh	2290	2210	2092
Densid	dad Seca= Dh / 1+ 0,01W%.	δs	1539	1573	1607
		% DE	HINCHAMIENTO		
ECT	JRA INICIAL		0,051	0,05	0,05
24 Hor	ras	1	0,194	0,199	0,168
18 ,,			0,303	0,274	0,201
72 ,,			0,456	0,398	0,323
96 ,,			0,533	0,491	0,421
	HINCHAMIENTO	%	5,04	4,48	3,02
	C.B.R.	%	12 GOLPES	25 GOLPES	56 GOLPES

Anexo 14: Estudios de suelo realizado por los autores (CBR penetración - lado derecho).

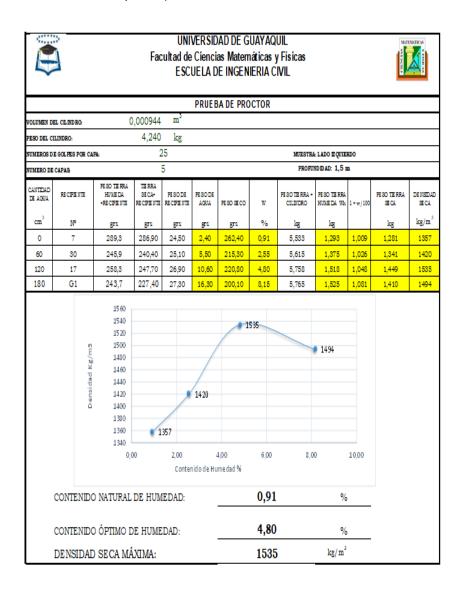
		ESCUEL	A DE ING	ENIERIA	CIVIL		-	
		CBR -	PENE	TRAC	CION			
ROFUNDIDAD:	1,5 m				CALICAT	A:	DERECHA	Α
OLDE No.:					VO LU ME	N MOLDE	0,002316	
o. DE GOLPES P	OR CAPA: 1	2 - 25 - 56			ALTURA	DE CAIDA	: 18 pulg.	
o. DE CAPAS: 5					PE SO DE	L MARTIL		
o. DE ENSAYO			1	2	3	1	2	3
				E PENETRA		_	DE PENETRA	
1.27 mm	(0.05")		55	88	121	25	40	55
2.54 mm	(0.10")		77	121	154	35 50	55 70	70 85
3.81 mm	(0.15")		110	154	187			
5.08 mm 7.62 mm	(0.20") (0.30")		132 165	176 220	231 286	60 75	80 100	105
7.62 mm 0.16 mm			209	220	352	95	100	160
0.16 mm 2.70 mm	(0.40") (0.50")		209	330	407	110	150	185
2.70 11111	(0.50)		242	330	407	110	150	100
o. DE ENSAYO			1	2	3	1	2	3
OI DE EN OATO				E UNITARIA	_	1 -	A UNITARIA	_
0 mm	(0,0")		0	0	0	0	0	0
1,27 mm	(0.05")		18,33	29.33	40.33	129	2.07	2.84
2,54 mm	(0.10")		25,67	40,33	51,33	1,81	2,84	3,62
3,81 mm	(0.15")		36,67	51,33	62,33	2,58	3,62	4,39
5,08 mm	(0.20")		44,00	58,67	77,00	3,10	4,13	5,43
7,62 mm	(0.30")		55,00	73,33	95,33	3,88	5,17	6,72
10,16 mm	(0.40")		69,67	73,33	117,33	4,91	5,17	8,27
12,7 mm	(0.50")		80,67	110,00	135,67	5,68	7,75	9,56
12						No. Golpes		e Penetracio
"-							0,1 Pulg	0,2 Pulg
10 —						12	1,81	3,10
m						25	2,84	4,13
\$ * 		$\overline{}$		-		56	3,62	5,43
ē 6 <u> </u>						C.B.R.		%
F OTT				•		12	2,58	2,95
5 4						25 56	4,06 5.17	3,94 5.17
Carga unitaria Kg/cm2						56	5,17	5,17

Anexo 15: Estudios de suelo realizado por los autores (granulometría, límites de atterberg y clasificación sucs y aashto - lado izquierdo)

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS INGENIERÍA CIVIL

Laboratorio de Suelos y Materiales Ing.Dr.Amaldo Ruffilli Av.Kennedy s/n. y Av. Delta - Teléfono: 2281037

GRANULOMETRIA


MUESTRA: CALICATA IZQUIERDO FECHA: 9 DE JULIO DEL 2021 PROFUNDIDAD: 1,5m

TAMIZ	PESO PARCIAL	% RETENIDO	% RETENIDO ACUMULADO	% PASANTE ACUMULADO
1/4"				
No. 4	23,60	3,12	3,12	96,88
No. 8	1,70	0,22	3,34	96,66
No. 10	0,20	0,03	3,37	96,63
No. 16	1,4	0,18	3,55	96,45
No. 20	2,2	0,29	3,84	96,16
No. 30	10,90	1,44	5,28	94,72
No. 40	321,20	42,44	47,72	52,28
No. 50	62,90	8,31	56,03	43,97
No. 60	169,1	22,34	78,37	21,63
No. 100	79,50	10,50	88,88	11,12
No.200	36,1	4,77	93,65	6,35
FONDO	48,10	6,35	100,00	0,00
TOTAL	756,90			

L	IM ITES DE ATTERBER	(G	CLASIFIC	IC.	
LIM ITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO	ASSHTO	G	
55%	19%	36%	A-7-6	CH	15%

Anexo 16: Estudios de suelo realizado por los autores (ensayo Proctor lado izquierdo).

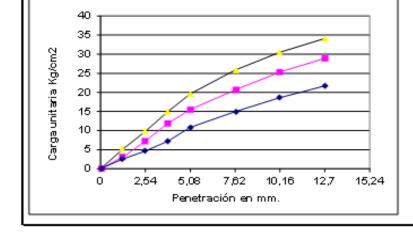
Anexo 17: Estudios de suelo realizado por los autores (densidad CBR - lado izquierdo)

			NCIAS MATEMÀTIC L DE INGENIERIA CI		NATIONAL PROPERTY.
	C.I	3.R. ·	DENSIDA	DES	
	CALICATA: Lado Izquierdo		Prof: 1,5 m.	Vol.del Espec.(m3)	0,002316
		ANTES	DE LA INMERSIO)N	
			12 Golpes x capa	25 Golpes x capa	56 Golpes x cap
	Recipiente N°		39	7	V
Q	Wh + Recipiente.		261,9	288,4	279,4
DA	Ws + Recipiente.		252,3	277,2	269,2
HUMEDAD	Ww		9,6	11,2	10,2
5	Wrecipiente		28,6	29,9	30,5
I	Wseco		223,7	247,3	238,7
	W% (porcentaje de hum edad)		4,291	4,529	4,273
	le Molde + Suelo Húmedo		10,211	10,493	10,565
	le Molde		6,611	6,788	6,817
oeso d	lel Suelo Húmedo.	Wh	3,6	3,705	3,748
eso d	lel Suelo Seco.	Ws	3,452	3,544	3,594
Coneti	do de agua=Wh / 1+ 0,01W%	W%	4,291	4,529	4,273
Densid	lad Húmeda= Wh/Volum.	δh	1554	1600	1618
Densid	lad Seca= Dh / 1+ 0,01W%.	δs	1490	1530	1552
	DE	SPUE	S DE LA INMERS	ION	
			12 Golpes x capa	25 Golpes x capa	56 Golpes x cap
	Recipiente N°		23	5	x
0	Wh + Recipiente.		311,2	367,3	430,1
HUMEDAD	Ws + Recipiente.		245,5	298,4	362,6
ш	Ww		65.7	68.9	67.5
₹	Wrecipiente		24.2	31	37,6
Ī	Wseco		221,3	267.4	325
	W% (porcentaje de hum edad)		29.688	25,767	20,769
oeso d	le Molde + Suelo Húm edo		11.009	11.090	11.139
eso d	le Molde		6.611	6,788	6,817
eso d	lel Suelo Húmedo.	Wh	4,398	4,302	4,322
eso d	lel Suelo Seco.	Ws	3,391	3,421	3,579
	do de agua=Wh / 1+ 0,01W%	W%	29.688	25.767	20.769
	lad Húmeda= Wh/Volum.	δh	1899	1858	1866
	lad Seca= Dh / 1+ 0,01W%.	δs	1464	1477	1545
2 011010	2002 2007 100,0000 70.	% DE	HINCHAMIENTO		1010
ECT	JRA INICIAL	/0 DE	0.05	0.05	0.05
24 Hor		+	0,05	0.047	0.045
10	GS	+	0,045	0,047	0,045
70	1	+	0,045	0,047	V,044
20		+			
,, de	HINCHAMIENTO	%	-0,10	-0,06	-0,12
	C.B.R.	%	12 GOLPES	25 GOLPES	56 GOLPES

UNIVERSIDAD DE GUAYAQUIL

FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS ESCUELA DE INGENIERIA CIVIL

CBR - PENETRACION

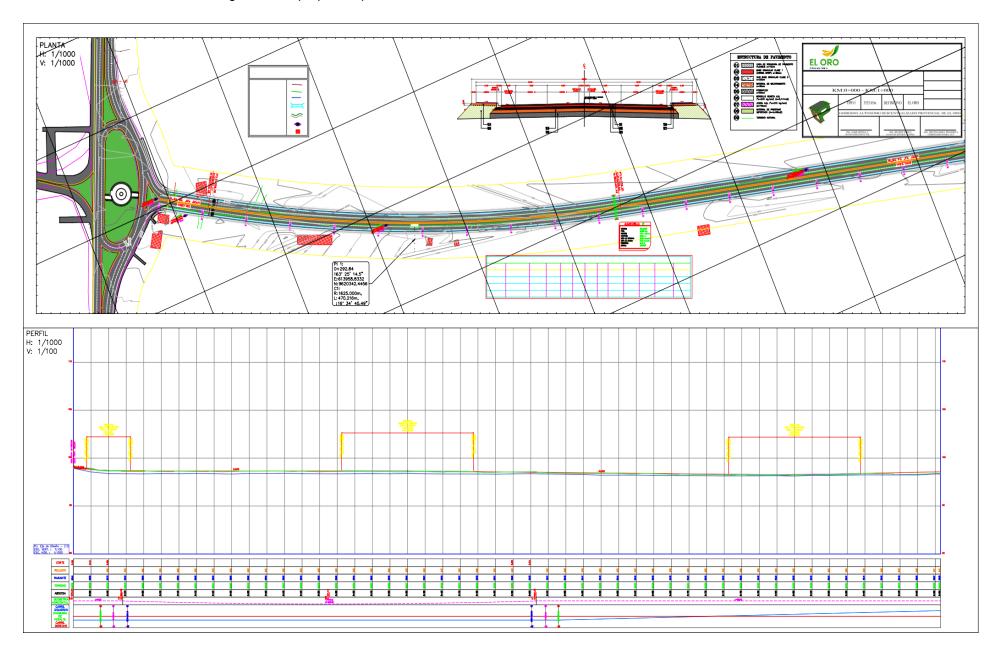

PROFUNDIDAD: 1,5 m CALICATA: DERECHA

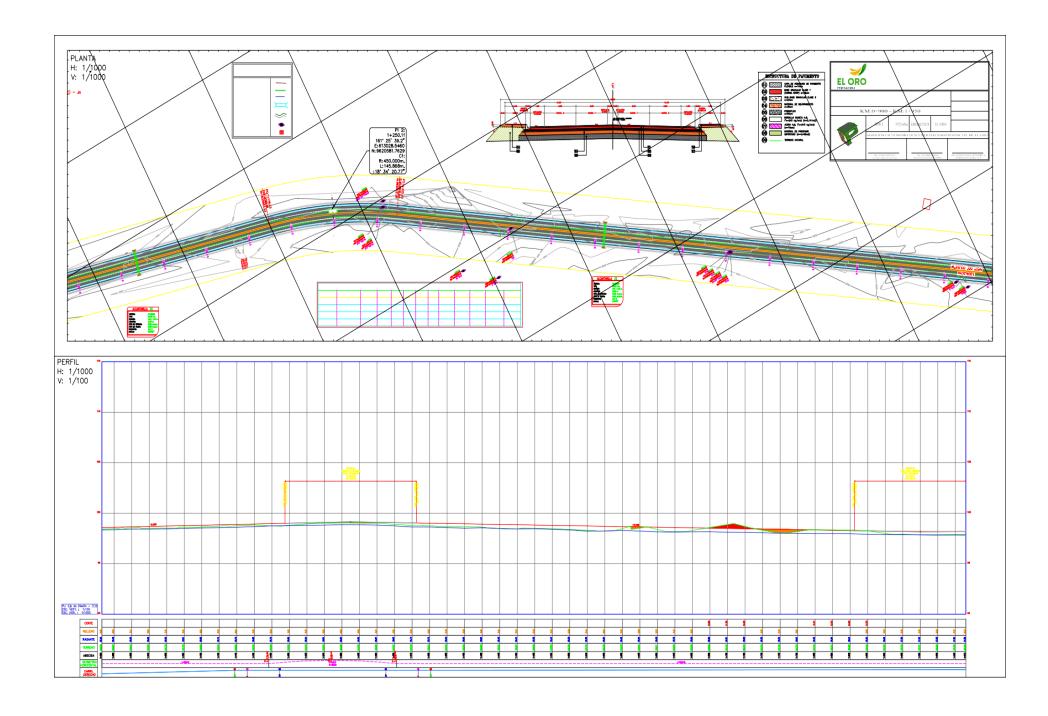
MOLDE No.: VOLUMEN MOLDE: 0,002316

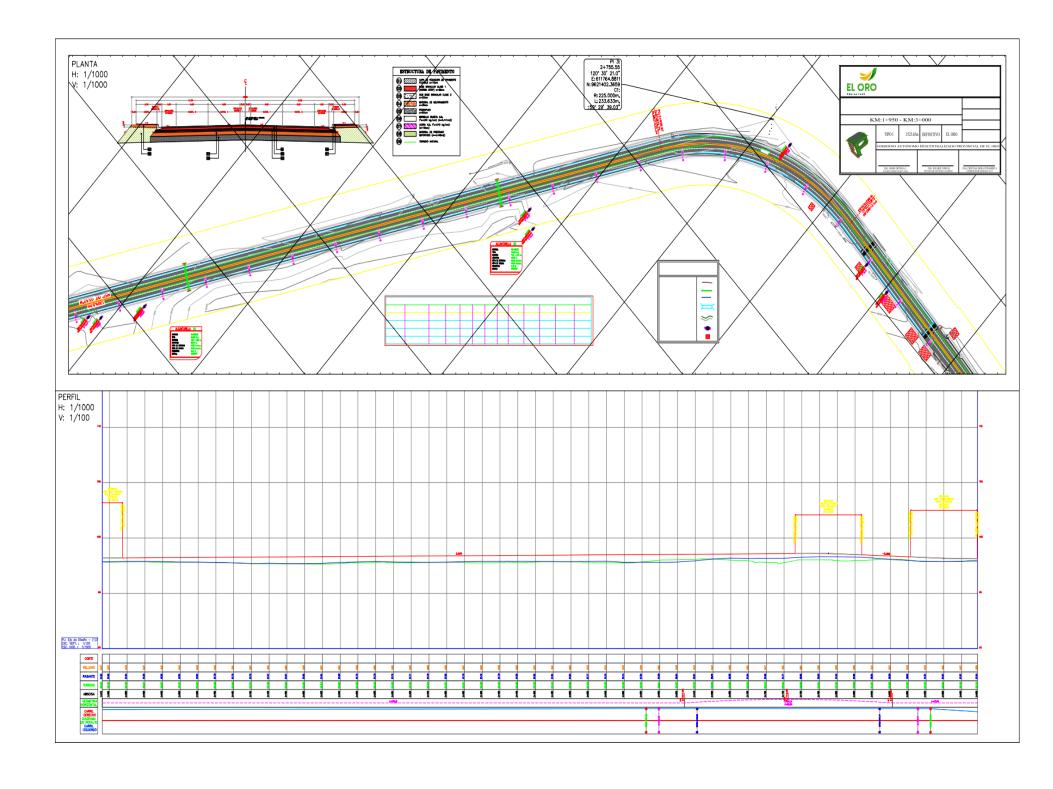
No. DE GOLPES POR CAPA: 12 - 25 - 56 ALTURA DE CAIDA: 18 pulg.

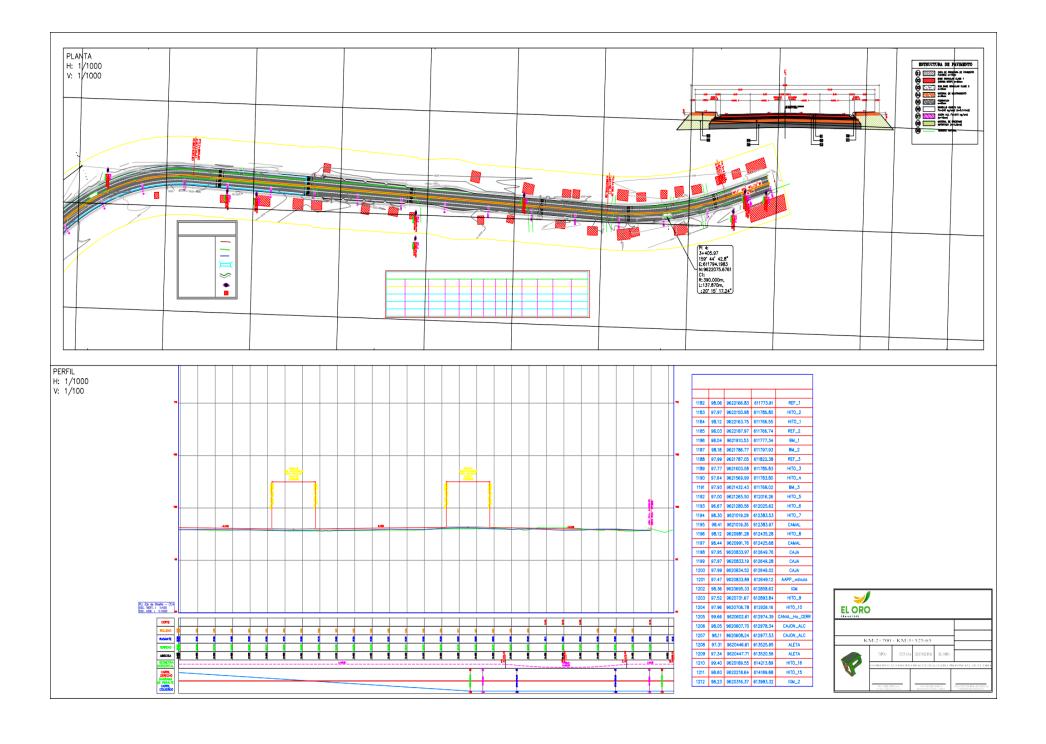
No. DE CAPAS: 5 PE SO DEL MARTILLO: 10 Lbs.

No. DE ENSAYO		1	2	3	1	2	3
		CARGA D	E PENETRA	CION LBS	CARGA [DE PENETRA	ACION Kg
1.27 mm	(0.05")	110	132	220	50	60	100
2.54 mm	(0.10")	198	308	418	90	140	190
3.81 mm	(0.15")	308	506	638	140	230	290
5.08 mm	(0.20")	462	660	836	210	300	380
7.62 mm	(0.30")	638	880	1100	290	400	500
10.16 mm	(0.40")	792	1078	1298	360	490	590
12.70 mm	(0.50")	924	1232	1452	420	560	660
No. DE ENSAYO		1	2			3	
		CARGA	E UNITARIA	LBS/plg ²	CARG	A UNITARIA	Kg/cm ²
0 mm	(0,0")	0	0	0	0	0	0
1,27 mm	(0.05")	36,67	44,00	73,33	2,58	3,10	5,17
2,54 mm	(0.10")	66,00	102,67	139,33	4,65	7,23	9,82
3,81 mm	(0.15")	102,67	168,67	212,67	7,23	11,88	14,98
5,08 mm	(0.20")	154,00	220,00	278,67	10,85	15,50	19,63
7,62 mm	(0.30")	212,67	293,33	366,67	14,98	20,67	25,83
10,16 mm	(0.40")	264,00	359,33	432,67	18,60	25,32	30,48
12,7 mm	(0.50")	308,00	410,67	484,00	21,70	28,93	34,10
1							

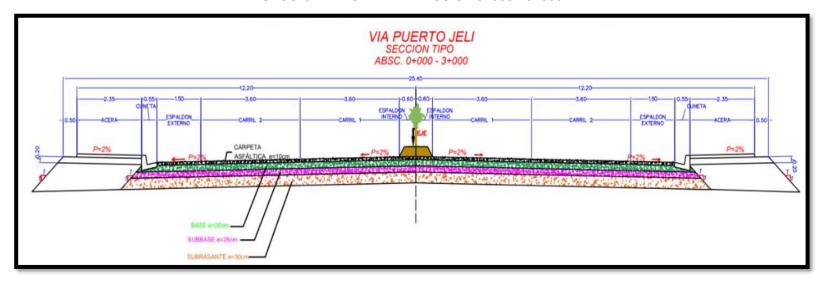


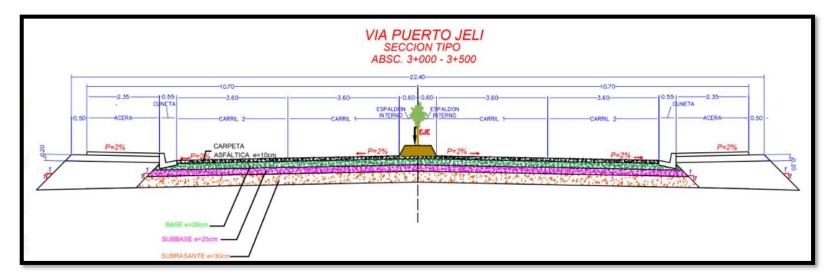

No. Golpes	Esfuerzod	e Penetración
	0,1 Pulg	0,2 Pulg
12	4,65	10,85
25	7,23	15,50
56	9,82	19,63
C.B.R.		%
12	6,64	10,33
25	10,33	14,76
56	14,02	18,70


Anexo 19: Cuadro de resumen de los estudios de suelo realizado por los autores.


	RESUMEN DE LAS PROPIEDADES GEOTECNICAS DE LA SUBRASANTE														
			CLASIFIC	CLASIFICACION		LIMITES	LIMITES DE CONSISTENCIA		% PASANTE				% HUM.	DENSIDAD SECA	
CAUCATA	PROFUND.	DESCRIPCION	sucs	AASHTO	IG%	Ц%	LP%	IP%	TAMIZ 4	TAMIZ 10	TAMIZ 40	TAMIZ 200	OPTIMA	MAXIMA (Kg/m3)	% CBR
	0,5	ARENAS ARCILLOSAS	SC	A-6	2	30	19,14	10,86	85,98	83,89	54,04	41,62			
1	1	ARCILLAS INORGANICAS DE ALTA PLASTICIDAD	СН	A-7-6	19	55	22,51	32,49	97,79	97,48	89,88	80,18	15	1634	4,5
	1,5	ARCILLAS INORGANICAS DE BAJA PLASTICIDAD	α	A-7-6	16	50	25,9	24,1	98,54	97,63	89,62	84,83			
	0,5	ARCILLA ORGANICA DE ARTA PLASTICIDAD	СН	A-7-6	15,26	55	19,14	35,86	98,82	98,41	75,17	53,92			
2	1	ARENA MAL GRADUADA , ARENA CON GRAVAS POCO O NADA DE FINOS	SP-SM	A-3			•		95,25	94,9	78,44	9,09	4	1544	11,5
	1 1 5	ARENA MAL GRADUADA , ARENA CON GRAVAS POCO O NADA DE FINOS	SP-SM	A-3					96,88	96,63	52,28	6,35			

Anexo 20: Planos del diseño geométrico propuesto por la consultora:





Anexo 21: Sección típica propuesto por los autores.

SECCION TIPICA EN LA ABSCISA 0+000 - 3+000

SECCION TIPICA EN LA ABSCISA 3+000 - 3+500

Anexo 22: Análisis de APUS del propuestos por parte de los autores.

BUBRO: BUBRO: BUJA: 6						
CAVACION A MAQUINA SIN CLASIFICAR DETAILE: UNIDAD: m²						
DETAILE: SUNIDAD: m²					HOJA: 6	
Caption					UNUDAD	
DESCRIPCION CANTIDAD TARIFA COST HORA RENDIMIENTO COST C	DETALLE:				UNIDAD:	m-
Excavadora de llanta 150HP						
Minicargador 59HP		CANTIDAD	TARIFA		RENDIMIENTO	
SUBTOTAL (M)		1,00				
MANO DE OBRA DESCRIPCION CANTIDAD JORNAL/HORA COSTO-HORA RENDIMIENTO COSTO COS	Minicargador 59HP	1,00	21,0000	21,00000	0,02778	0,58333
MANO DE OBRA DESCRIPCION CANTIDAD JORNAL/HORA COSTO-HORA RENDIMIENTO COSTO COS	SUBTOTAL (M)					1 83333
DESCRIPCION						1,00000
Peón		CANTIDAD	JORNAL/HORA	COSTO-HORA	RENDIMIENTO	COSTO
Op. de Operador miniexoavadora/minicargadora con sus aditamentos 1 3,86 3,86000 0,02778 0,10722	Op. de Excavadora	1	4,06	4,06000	0,02778	0,11278
SUBTOTAL (N) MATERIALES DESCRIPCION UNIDAD CANTIDAD P. UNITARIO COSTO SUBTOTAL (O) 0,00000 TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) TOTAL COSTOS DIRECTOS (M+N+O+P) INDIRECTOS Y UTILIDADES OTROS INDIRECTOS O,43067	Peón	1	3,63	3,60000	0,02778	0,10000
MATERIALÉS DESCRIPCION UNIDAD CANTIDAD P. UNITARIO COSTO SUBTOTAL (0) 0,00000 TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Erter procier na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 0,43067 OTROS INDIRECTOS	Op. de Operador miniexcavadora/minicargadora con sus aditamentos	1	3,86	3,86000	0,02778	0,10722
MATERIALÉS DESCRIPCION UNIDAD CANTIDAD P. UNITARIO COSTO SUBTOTAL (0) 0,00000 TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Erter procier na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 0,43067 OTROS INDIRECTOS	SUBTOTAL (N)					0.32000
DESCRIPCION UNIDAD CANTIDAD P. UNITARIO COSTO SUBTOTAL (0) 0,00000 TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) TOTAL COSTOS DIRECTOS (M+N+O+P) 1NDIRECTOS Y UTILLIDADES 0,43067 OTROS INDIRECTOS						0,02000
TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Ertar prociar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,003 0,43067 OTROS INDIRECTOS			UNIDAD	CANTIDAD	P. UNITARIO	COSTO
TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Ertar prociar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,003 0,43067 OTROS INDIRECTOS						
TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Ertar prociar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,003 0,43067 OTROS INDIRECTOS						
TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Ertar prociar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,003 0,43067 OTROS INDIRECTOS						
DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO SUBTOTAL (P) Ertar preciar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,003 0,43067 OTROS INDIRECTOS					SUBTOTAL (O)	0,00000
SUBTOTAL (P) Erbar prociar na incluyen IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20,00≥ 0,43067 OTROS INDIRECTOS	TRANSPURTE DE CODIDEION		LINIDAD	CANTIDAD	TADICA	COCTO
TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20.002 0,43067 OTROS INDIRECTOS	DESCRIPCION		UNIDAD	CANTIDAD	IAHIFA	LUSIU
TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20.002 0,43067 OTROS INDIRECTOS						
TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20.002 0,43067 OTROS INDIRECTOS						
TOTAL COSTOS DIRECTOS (M+N+O+P) 2,15333 INDIRECTOS Y UTILIDADES 20.002 0,43067 OTROS INDIRECTOS	SUBTOTAL (P)					0,00000
OTROS INDIRECTOS	Ertar prociar na incluyon IVA					
OTROS INDIRECTOS			TOTAL COSTO	S DIRECTOS (M-	•N+O+P)	
			INDIRECTOS Y	UTILIDADES	20,00%	0,43067
COSTO TOTAL DEL RUBRO (autores) 2,58 VALOR OFFRTADO (consultora) 3,32			UTROS INDIREC	.TUS		
COSTO TOTAL DEL RUBRO (autores) 2,58 VALOR OFFRTADO (consultora) 3 32						
VALOB OFFREADO (consultora) 2,30			COSTO TOTAL	DEL BUBBO (au	toresì	2 59
			VALOR OFFRTA	DD (consultora)	(0100]	3 32

m³
_
·C*R
STO
1,4998
0,4999
0,4333
0,0113
2,01110
2,0111
STO
<u> </u>
0.1040
0,1346
0,2419
0.0700
0,3766
CTO
STO
0,0000
ISTO
0,0000
2,3877
0,4775
- 0.4773.
0,4773
0,4773
0,4773
2,87
):):

RUBRO: HOJA: 8 DE 244 ESTABILIZACION DE MATERIAL PETREO (COLOCACION DE PEDRAPLEN BAJO SUBRASANTE) DETALLE: UNIDAD: m³ **EQUIPOS** В C=A*B R D=C*R Α COSTO HORA | RENDIMIENTO DESCRIPCION CANTIDAD TARIFA COSTO herramientas menores 3 % MO 0,00292 37,00000 Rodillo Vibratorio liso, 135 HP 1,00 37,0000 0.01000 0,37000 Tractor de oruga D8T de 320 HP 1,00 95,0000 95,00000 0,01000 0,95000 SUBTOTAL (M) 1,32292 MANO DE OBRA DESCRIPCION CANTIDAD | JORNAL/HORA | COSTO-HORA | RENDIMIENTO | COSTO 3,86000 0.01000 Op. Rodillo autopropulsado 0,03860 3,65 1,82500 0,01000 0,01825 Engrasador o abastecedor responsable <Estr.Oc.D2> 0,5 Op. de Tractor carriles o ruedas «bulldozer Topador roturador malacate trail 4,06000 0,01000 0,04060 4.06 SUBTOTAL (N) 0.09745 MATERIALES DESCRIPCION UNIDAD CANTIDAD P. UNITARIO COSTO 5,5000 MATERIAL DE ESTABILIZACION M3 1,2500 6,87500 SUBTOTAL (O) 6,87500 TRANSPORTE DESCRIPCION UNIDAD CANTIDAD TARIFA COSTO 0 SUBTOTAL (P) 0.00000 Ertar prociar na incluyon IVA TOTAL COSTOS DIRECTOS (M+N+O+P) 8,29537 INDIRECTOS Y UTILIDADES 20,00% 1,65907 OTROS INDIRECTOS COSTO TOTAL DEL RUBRO (autores) 9.95 VALOR OFERTADO (consultora) 11,66

			WO.11. 40	DE 044
			HOJA: 10	DE 244
			UNIDAD:	m³
Α	В	C=A*B	R	D=C*R
CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
				0,00297
1,00			0,00658	0,32900
				0,24346
1,00	20,0000	20,00000	0,00658	0,13160
				0.70700
				0,70703
CANTIDAD	IODNAL ILIODA	COCTO HODA	DENDIMIENTO	COSTO
CANTIDAD				
				0,02671 0,02540
				0,02540
	3.65			0,03434
	0,00	1,02000	0,00030	0,01201
				0,09906
	UNIDAD	CANTIDAD	P. UNITARIO	COSTO
	M3	1,2500	1,2500	1,56250
			SUBTOTAL (O)	1,56250
			` '	-
	UNIDAD	CANTIDAD	TARIFA	COSTO
				0,00000
	TOTAL COCTO	C DIDECTOR (A)	N.O.D	2.20050
				2,36859 0,47372
	INDIRECTOS Y UTILIDADES 20,00%			
	OTROS INDIREC	CTOS		
	COSTO TOTAL DEL RUBBO (autores)			2,84
	VALOR OFERTA	ADO (consultora)		4,21
	CANTIDAD	CANTIDAD TARIFA 1,00	CANTIDAD TARIFA COSTO HORA	CANTIDAD TARIFA COSTO HORA RENDIMIENTO

RUBRO:				HOJA: 12	DE 244
TRANSPORTE DE MATERIAL DE PRÉSTAMO IMPORTADO					
DETALLE:				UNIDAD:	m³łkm
EQUIPOS	A	В	C=A*B	R	D=C*R
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Volqueta 12 m³	1,00	35,0000	35,00000	0,00417	0,14595
SUBTOTAL (M)					0,14595
MANO DE OBRA	I = .	· · ·		I ————————————————————————————————————	
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO-HORA	RENDIMIENTO	COSTO
CHOFER: Volquetas	1	5,31	5,31000	0,00417	0,02214
SUBTOTAL (N)					0,02214
MATERIALES					0,02211
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION		UNIDAD	CANTIDAD	F. UNITADIO	COSTO
				SUBTOTAL (O)	0,00000
TRANSPORTE				OOD TO THE (O)	0,00000
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		UNIDAD	CANTIDAD	TANIFA	CO310
CUDTOTAL (D)					0.00000
SUBTOTAL (P) Ertar prociar na incluyon IVA					0,00000
		TOTAL COSTO	S DIRECTOS (M	-N+Ω+P)	0,16809
ELABORADO POR:				20,00%	0,03362
				0,03362	
		OTROS INDIRECTOS			
		COSTO TOTAL DEL RUBRO (autores) 0,20			
		VALOR OFERTA	ADO (consultora)		0,24

FICHA DE REGISTRO DE TRABAJO DE TITULACIÓN

REPOSITORIO	O NACIONAL EN CIENC	CIA Y TEC	CNOLOGÍA			
FICHA DE REGIS	TRO DE TESIS/TRABA.	JO DE GR	ADUACIÓN			
TÍTULO Y SUBTÍTULO:	ANÁLISIS TÉCNICO-ECONÓMICO DE LA AMPLIACIÓN A 2 CALZADAS DE LA VÍA SANTA ROSA – PUERTO JELÍ DEL CANTÓN SANTA ROSA, PROVINCIA DEL ORO					
AUTOR(ES)	Kevin Jair Chavez Zapata – Alex Stalin Pallo Cuzco					
REVISOR(ES)/TUTOR(ES)	Ing. Francisco Córdova Rizo, M. Sc / Ing. DAVID STAY COELLO, M.Sc.					
INSTITUCIÓN:	Universidad de Guayaquil					
UNIDAD/FACULTAD:	Facultad de Ciencias Matemáticas y Físicas					
MAESTRÍA/ESPECIALIDAD:						
GRADO OBTENIDO:						
FECHA DE PUBLICACIÓN:	Octubre, 2021	No. DE PÁGINAS:	176			
ÁREAS TEMÁTICAS:	Ampliación a 2 calzadas de la vía Santa Rosa — Puerto Jelí					
PALABRAS CLAVES/ KEYWORDS:	DISEÑO, CALICATAS, LIMITES DE ATTERBERG, PROCTOR, CBR.					
RESUMEN/ABSTRACT: El presente trobtenidos sobre la ampliación de la de tráfico de 4 días, con dos días nutilidad para determinar el TPDA covía. Así mismo, estos parámetrosteriormente, se realizaron la tepermitentes como: granulometría, propiedades físicas de los materiale un material apropiado para soporta	vía Santa Rosa – Puerto Jelí, teniormales y dos días especiales, e on un periodo de proyección de os permitieron la determinación de 2 calicatas en lugares, límites de atterberg, proctores, teniendo en cuenta que si no	iendo en cuer stos datos to 20 años ayu ión y diseñ al azar de la y CBR, el cu o son los adeo	nta que se realizó un mados en campo fo dando a clasificar e o del pavimento vía, aplicando los al servirá para cor cuados se debe reco	n estudio ueron de el tipo de flexible. ensayos nocer las		
ADJUNTO PDF:	x SI	NO				
CONTACTO CON AUTOR/ES:	Teléfono: 0982594954 0967478963	· · · · · · · · · · · · · · · · · · ·	z96@hotmail.com 93@gmail.com			
	Nombre: FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS					
CONTACTO CON LA INSTITUCIÓN:	Teléfono: 2-283348					

E-mail: fmatematicas@ug.edu.ec