

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE INGENIERÍA INDUSTRIAL DEPARTAMENTO ACADÉMICO DE TITULACIÓN

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE LICENCIADO EN SISTEMAS DE INFORMACIÓN

ÁREA SISTEMAS

TEMA SISTEMA DE INFORMACIÓN QUE SIMULA LOS PROCESOS DE PRODUCCIÓN DE CACAO ORGÁNICO DE EXPORTACIÓN

AUTOR CHALÉN FREIRE MARIO IRWING

DIRECTOR DEL TRABAJO
ING. SIST. JARAMILLO CAMPOS MARIA MERCEDES, MBA

2016 GUAYAQUIL – ECUADOR

DECLARACIÓN DE AUTORIA

"La responsabilidad del contenido de este trabajo de titulación, me corresponde exclusivamente y el patrimonio intelectual del mismo a la facultad de ingeniería industrial de la universidad de Guayaquil"

Chalén Freire Mario Irwing
C.C 0925611964

DEDICATORIA

Dedicado a todas las horas de estudio y entrega para llegar hasta este trabajo.

AGRADECIMIENTO

A mis padres por su apoyo incondicional en mi vida y carrera estudiantil.

A la Ingeniera María Mercedes Jaramillo campos, MBA por su paciencia y enseñanzas.

Pág.

6

7

7

8

9

9

9

ÍNDICE GENERAL

N°

1.12

1.13

1.14

1.15

1.16

1.16.1

1.16.2

Población

Objetivo

Justificación del tema

Relevancia tecnológica

Objetivo específicos

Objetivos de la investigación

Relevancia social

Descripción

	PRÓLOGO	1
	CAPÍTULO I INTRODUCCIÓN	
N°	Descripción	Pág.
1.1	Tema	3
1.2	Introducción	3
1.3	Antecedentes	3
1.4	Fundamento	3
1.5	El porqué del tema	3
1.6	Objeto de la investigación	5
1.7	Delimitación espacial	5
1.8	Delimitación temporal	5
1.9	Delimitación sustantiva	5
1.10	Delimitación del problema	6
1.11	Problema	6

No.	Descripción	Pág.
2.1	Alcance de la Investigación	10
2.2	Metodología de Desarrollo de Software	10
2.2.1	Fase 1: Planificación	12
2.2.2	Fase 2: Diseño	12
2.2.3	Fase 3: Codificación	12
2.2.4	Fase 4: Pruebas	12
2.3	Estudio de Factibilidad: Tecnológica, Operativa y	
	Económica	13
2.3.1	Factibilidad	13
2.3.1.1	Factibilidad Tecnológica	13
2.3.1.2	Factibilidad Operativa	14
2.3.1.3	Factibilidad Económica	14
2.4	El cacao Ecuatoriano	15
2.4.1	Tratamiento de Post Cosecha del Cacao	17
2.4.2	Fermentación Aeróbica	18
2.4.3	Secado Artificial	19
2.5	Ecuaciones Químicas	20
2.6	Sistema de Información	20
2.6.1	Simulación	20
2.6.2	Lenguaje de Programación	21
2.6.3	Java	21
2.6.4	NetBeans 8.0.2	22
2.6.5	Base de Datos	22
2.6.6	MySql 10.0	22
2.7	Reseñas	23
	CAPÍTULO III	
	METODOLOGÍA	
No.	Descripción	Pág.
3.1	Metodología de Desarrollo de Software	25

N°	Descripción	Pág.
3.1.1	Planeación	25
3.1.1.1	Análisis de la investigación	25
3.1.1.2	Población	26
3.1.1.3	Muestra	27
3.1.1.4	Técnicas de Observación y Recolección de Datos	27
3.1.1.5	Instrumentos de Recolección de Datos	28
3.1.1.6	Observación	28
3.1.1.7	Procedimiento	29
3.1.1.8	Técnicas de Análisis	30
3.1.1.9	Análisis de las Encuestas	30
3.1.1.10	Conclusión	36
3.1.2	Descripción de la Situación Actual	36
3.2	Listado de Actores roles y sus Funciones	38
3.3	Requerimientos Funcionales	39
3.4	Requerimientos No funcionales	40
3.5	Diseño	41
3.5.1	Diagrama de casos de uso	41
3.5.2	Diagrama de clases	48
3.5.3	Diseño de Pantallas	48
	CAPÍTULO IV	
	PROPUESTA	
No.	Descripción	Pág.
4.1	Título de la propuesta	54
4.2	Objetivos	54
4.3	Entorno de Desarrollo de software	54
4.4	Arquitectura	55
4.5	Metodología	56
4.5.1	Diseño	56

N°	Descripción	Pág.
4.5.1.1	Modelo de Datos	56
4.5.1.2	Modelo Entidad-Relación	57
4.5.1.3	Diagrama de Actividades	58
4.5.1.4	Diccionario de Datos	59
4.5.2	Codificación	63
4.5.2.1	Lenguaje de Programación	63
4.5.2.2	Base de Datos	63
4.5.3	Pruebas	64
4.5.3.1	Fase de Pruebas	64
4.5.3.2	Fase de Implementación	66
4.6	Cronograma	66
4.7	Impacto de la Propuesta	67
4.8	Conclusiones	68
4.9	Recomendaciones	69
	ANEXOS	70
	BIBLIOGRAFÍA	78

ÍNDICE DE CUADROS

N°	Descripción	Pág.
1	Requisito de calidad del cacao beneficiado	16
2	Listado de los actores con sus roles y funciones	38
3	Requerimientos funcionales	39
4	Requerimientos no funcionales	40
5	Caso de uso detallado – Ingreso de materia prima	44
6	Caso de uso detallado – fermentación aeróbica	45
7	Caso de uso detallado – secado artificial	45
8	Caso de uso detallado - reporte de ingreso de cacao	47
9	Ingreso de materia prima	49
10	Fermentación aeróbica	49
11	Secado artificial	50
12	Reporte de ingreso de materia prima	51
13	Reporte de fermentación aeróbica	51
14	Reporte de secado artificial	52
15	Reporte de proveedores	53
16	Fase de pruebas	65
17	Impacto de la propuesta	67

ÍNDICE DE DIAGRAMAS

N°	Descripción	Pág.
1	Diagrama de flujo	37
2	Diagrama de clases	48
3	Modelo de datos	57
4	Diagrama entidad relación	58
5	Diagrama de actividades	59

ÍNDICE DE TABLAS

N°	Descripción	Pág.
1	Usuario	60
2	Proveedor	61
3	Fermentación aeróbica	61
4	Secado artificial	62
5	Ingreso cacao	62
6	Cliente	63

ÍNDICE DE GRÁFICOS

N°	Descripción	Pág.
1	Metodología XP	11
2	Qué tipo de caco llega a la planta?	30
3	A cual de los siguientes mercados va dirigido el	
	Cacao una vez procesado?	31
4	Han considerado los directivos de la planta	
	Introducirse en el negocio de cultivo del cacao?	31
5	Los productos se encuentran de acuerdo con el	
	el porcentaje de producción alcanzado por hectárea	
	en el proceso de fermentación y secado?	32
6	Es alta la pérdida de los lotes de cacao al exportar	
	los mismos?	32
7	Se ha diseñado mecanismo para darles un tratamiento	
	técnico a los desperdicios de la baba de cacao	
	Durante el tratamiento de la fermentación?	33
8	En el proceso de fermentación de cacao se	
	Pierden muchas libras para obtener el grado	
	De acidez requerido?	33
9	¿Considera Necesario El Asesoramiento Técnico	34
10	Sobre la cantidad de elementos químicos	
	que debe utilizarse en una determinada cantidad	
	de cacao para los procesos de fermentación y	
	secado?	35
11	¿Actualmente la planta procesadora de semillas	
	cuenta con maquinarias que ayuden a automatizar	
	el tiempo en los procesos de la post cosecha?	35

N°	Descripción	Pág.
12	¿Considera usted conveniente la aplicación de	
	un sistema de información para automatizar los	
	procesos de ingreso, fermentación y secado?	41
13	Caso De Uso Ingreso De Materia Prima	42
14	Caso De Uso Ingreso De Fermentación Aeróbica	43

ÍNDICE DE ANEXOS

N°	Descripción	Pág.
1	Entrevista a la población que interviene en los procesos	
	de post cosecha de la planta procesadora de semillas	
	Apovinces.	71
2	Encuesta dirigida a la población que interviene en los	
	Procesos de post cosecha de la planta procesadora	
	de semillas Apovinces.	73
3	Diagrama de GANTT del sistema	76

AUTOR: CHALÉN FREIRE MARIO IRWING

TEMA: SISTEMA DE INFORMACIÓN QUE SIMULA LOS

PROCESOS DE PRODUCCION DE CACAO ORGÁNICO

DE EXPORTACIÓN

DIRECTOR: ING. SIST. JARAMILLO CAMPOS MA. MERCEDES, MBA

RESUMEN

Ecuador, es el mayor exportador a nivel mundial de cacao fino y de aroma, posee unas características únicas en su fruto. Considerando la importancia que tiene el cacao ecuatoriano, se ha realizado una investigación de tipo experimental e histórico, para estudiar los métodos de fermentación aeróbica y del secado artificial que actualmente se dan en la planta. Con la información obtenida durante la investigación, se propone un sistema de información que simule los procesos de producción de cacao orgánico de exportación en sus fases: fermentación aeróbica y secado artificial, con el fin de mejorar los niveles de producción y exportación que se dan en la planta, además de proporcionar información que sirva para la toma de decisiones.

PALABRAS CLAVES: Cacao, Experimental, Secado, Artificial, Fermentación, Aeróbica, Sistema, Información.

AUTHOR: CHALÉN FREIRE MARIO IRWING

SUBJECT: INFORMATION SYSTEM THAT SIMULATES THE

PROCESSES OF PRODUCTION OF ORGANIC CACAO

TO EXPORT

DIRECTOR: SYST. ENG. JARAMILLO CAMPOS MERCEDES, MBA.

ABSTRACT

Ecuador is the largest exporter to the global level of cocoa and fine aroma, it has some unique characteristics in its fruit. Considering the importance of the Ecuadorian cocoa, has conducted an investigation of an experimental nature and historical, to study the methods of aerobic fermentation and the artificial drying that currently occur in the plant. With the information obtained during the investigation, it is proposed a system of information that simulate the processes of production of organic cacao to export in its phases: aerobic fermentation and artificial drying, in order to improve production and export levels that occur in the plant, in addition to providing information that can be used for decision-making.

KEY WORDS: Cocoa, Experimental, Drying, Artificial, Fermentation, Aerobic, System, Information.

PRÓLOGO

Este trabajo presenta la propuesta de mejorar los procesos de producción de cacao orgánico a través de un sistema de información que simula los procesos de producción de cacao orgánico de exportación.

Este sistema de información basado en simulación, resolverá el problema de la baja producción de cacao que posee actualmente la planta de semillas certificadas de Vinces, mediante el mejoramiento en los procesos de fermentación y secado, los cuales corresponden a las principales etapas dentro del proceso de post cosecha de cacao.

Por medio de ecuaciones químicas, determinará el grado de acidez y el porcentaje de humedad que sufre el grano de cacao durante las etapas de fermentación y secado respectivamente, como resultado se obtendrán los valores requeridos por el cliente.

Utilizando el sistema se podrán obtener todos los reportes que sean requeridos por los administradores de la planta.

El trabajo se encuentra estructurado de la siguiente manera:

En la primera parte se presentan los antecedentes y la introducción concerniente al desarrollo de esta propuesta.

En la segunda parte se describen brevemente los conceptos operacionales y técnicos que estarán presentes en esta investigación.

En la tercera parte se esbozan las metodologías de desarrollo e investigación utilizadas para el levantamiento y tratamiento de la información del presente trabajo de titulación.

En la cuarta parte se plantea la propuesta como una solución al problema de esta investigación.

CAPÍTULO I

INTRODUCCION

1.1 Tema

Sistema de información que simula los procesos de producción de cacao orgánico de exportación.

1.2 Introducción

El presente trabajo de titulación se realizará en la planta procesadora de semillas certificadas de la Universidad de Guayaquil, que forma parte de la Asociación de Productores Orgánicos de Vinces APOVINCES.

1.3 Antecedentes

La planta procesadora presenta problemas en los procesos de fermentación y secado del cacao, esto trae como consecuencia bajos niveles de producción y exportación del producto.

A continuación, se presentan las principales causas que ocasionan los problemas en la planta:

- Procesos manuales
- Pruebas físicas
- Mezcla de dos tipos de cacao "Arriba" y cacao CCN-51

1.4 Fundamento

El presente trabajo plantea la automatización de los cálculos requeridos de las dos últimas etapas fundamentales del proceso post cosecha del cacao, mediante los módulos de fermentación aeróbica y secado artificial, conjuntamente con un módulo de reportes el cual contendrá todos los resultados.

Estos módulos estarán contenidos en el sistema de información que simule los procesos de producción

A continuación se describen brevemente los módulos del sistema de información:

- Módulo de fermentación aérobica: donde se calcula el total de cacao fermentado, así como también otras propiedades que sufren durante este proceso.
- Módulo de secado artificial: se lo realiza con una máquina automática rotatoria que gira a 360 grados, la cual calcula la temperatura y el tiempo que debe estar el cacao en la máquina para que llegue al porcentaje de humedad especificado.
- Módulo de Reportes: que corresponden a los resultados de las operaciones realizadas en los procesos de fermentación aeróbica y secado artificial, donde se presentan con la finalidad de conocer el comportamiento de productividad que ha tenido la planta por trimestres, semestres y año.

1.5 El porqué del tema

Dada la problemática en el proceso de post cosecha que se presenta, nace la necesidad de desarrollar un sistema de información que simule los procesos de producción de cacao orgánico, y a su vez incremente la eficiencia operacional, mejore los niveles de producción y exportación de cacao, reduzca los costos, optimice el talento humano, y origine una producción menos contaminante para el medio ambiente.

1.6 Objeto de la investigación

Se ha tomado como objeto de investigación el área de producción de la planta procesadora de semillas certificadas, la cual se compone de seis fases: ingreso del cacao, secado en el tendal, fermentación aeróbica, fermentación anaeróbica, secado artificial y reportes.

1.7 Delimitación espacial

El presente trabajo de titulación se realizará en la planta procesadora de semillas certificadas de la Universidad de Guayaquil ubicada en Vinces provincia de los Ríos.

1.8 Delimitación temporal

El sistema de simulación de procesos de producción de cacao orgánico de exportación, será desarrollado durante 6 meses, que abarcan los meses desde Octubre 2015 hasta Marzo de 2016.

1.9 Delimitación sustantiva

Este sistema de información basado en simulación, resolverá el problema de la baja producción de cacao que posee actualmente la planta de semillas certificadas de Vinces, mediante el mejoramiento en los procesos de fermentación y secado, los cuales corresponden a las principales etapas dentro del proceso de post cosecha de cacao. Por medio de ecuaciones químicas, el sistema determinará el grado de acidez y el porcentaje de humedad que sufre el grano de cacao durante las

Introducción 6

etapas de fermentación y secado respectivamente, como resultado se

obtendrán los valores requeridos por el cliente.

1.10 Delimitación del problema

Campo: Tecnológico

Área: Agricultura

Aspecto: Software de simulación de procesos.

Tema: "Sistema De Simulación De Procesos De Producción De Cacao

Orgánico De Exportación".

Delimitación espacial: Provincia de los ríos, cantón Vinces, Ecuador

1.11 Problema

La planta de semillas certificadas presenta problemas en los

procesos de fermentación y secado del cacao, esto trae como

consecuencia bajos niveles de producción y exportación de cacao.

A continuación, se describen las principales causas que ocasionan

los problemas en la planta:

• Procesos netamente manuales sin la ayuda de ningún sistema, lo cual

produce tiempos de ejecución más largos y menos efectivos

• Pruebas físicas de la fermentación del cacao, que ocasionan

desperdicio de la materia prima.

• Mezcla de dos tipos de cacao "Arriba" y cacao CCN-51, los cuales, al

poseer diferentes características, dan como resultado una baja calidad.

1.12 Población

Apovinces – Planta de semillas Certificadas

1.13 Justificación del Tema

El procesamiento en la planta es un proceso mecanizado, parcial y manual ya que la calidad del grano de cacao se ve afectado por varios factores como: humedad, ciclo del tiempo, agua y aire en la fermentación y el tipo de cacao.

Mediante la implementación del sistema de información que simule los procesos de producción de cacao, se pretende conseguir los siguientes beneficios:

- Incrementar la eficiencia operacional del proceso de post cosecha.
- Minimizar el impacto ambiental mediante un control de los desperdicios que se generan durante el proceso
- Mejorar los niveles de producción y exportación del cacao.

1.14 Relevancia social

Según los objetivos 7 el cual se basa en garantizar los derechos de la naturaleza y promover la sostenibilidad ambiental territorial y global y el objetivo 10 el cual se fundamenta en Impulsar la transformación de la matriz productiva, el proyecto apunta a mejorar los procesos de pos cosecha de la planta, logrando así mejores índices de exportación, de igual manera presenta la particularidad que integra parte de conocimientos científicos en la agricultura con el uso de la tecnología, dando buen uso de la materia prima y los recursos naturales de nuestras tierras.

Sectores Beneficiados

Con la implementación de este trabajo de titulación se beneficiará a la Asociación de Apovinces, la planta de semillas Certificadas y a la Universidad de Guayaquil.

1.15 Relevancia Tecnológica

Actualmente el uso de la tecnología es indispensable, ya sea en casa, trabajos, universidades, colegios, y otras entidades, es por ello que, en el área agrícola, específicamente en el procesamiento de post cosecha de cacao, se implementará un sistema de información que ayude a mejorar y optimizar estos procesos, integrando así conocimientos científicos con el uso de la tecnología.

Para el desarrollo del sistema se utilizaron las siguientes herramientas tecnológicas:

- MySql
- Java
- Netbeans

Tendencia en el mercado internacional

Recientemente ha aumentado considerablemente el consumo de chocolate negro con más contenido de cacao. Esta transformación se ha producido, en concreto, en los mercados maduros de Europa y Norteamérica, es ahí donde entra el Ecuador como exportador número 1 en el mundo de cacao fino y de aroma con el 70% de las exportaciones de cacao en esta categoría.

Por la tendencia en el mercado internacional con respecto al consumo y exportación de cacao fino y de aroma, se propone implementar un sistema de información que simule los procesos de producción de cacao orgánico de exportación, permitiendo mejorar los procesos principales como son la fermentación y secado. Obteniendo así mayores niveles de producción y exportación de cacao.

1.16 Objetivos de la investigación

1.16.1 Objetivo

Incrementar la eficiencia operacional en el proceso de post cosecha y reducción de costos en la planta procesadora de semillas, por medio del sistema de información que simula los procesos de producción de cacao orgánico de exportación.

1.16.2 Objetivos específicos

- Promover la innovación tecnológica industrial del cacao fino de aroma en la planta procesadora de semilla en la Universidad de Guayaquil.
- Predecir el comportamiento de los procesos bajo diversas situaciones para analizar posibles alternativas de optimización.
- Proporcionar información de manera íntegra, segura y eficiente que sirva para una correcta toma de decisiones.

CAPÍTULO II

MARCO TEÓRICO

2.1 Alcance de la investigación

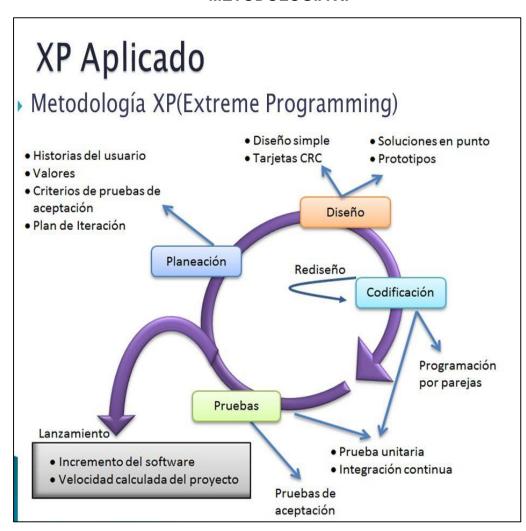
El propósito del presente trabajo de titulación se basa en el mejoramiento de los dos procesos principales de la post cosecha de cacao, los cuales son la fermentación aeróbica y el secado artificial, mediante la implementación de un sistema de información que simule los procesos de producción de cacao orgánico de exportación.

A continuación se presentan los 3 módulos que conforman el sistema:

- Módulo de Fermentación aeróbica.
- Módulo de Secado artificial.
- Módulo de Reportes.

2.2 Metodología de desarrollo de software

La metodología que se utilizará para desarrollar el sistema es la Programación extrema (XP), la cual ofrece beneficios como: un proceso de software liviano con pocas reglas y pocas prácticas, simplicidad de diseño, trabajo en equipo, participación con el cliente, capacidad de cambio.


Estos beneficios permiten obtener resultados a medida que el proyecto avanza.

En esta metodología es importante la participación del usuario en todas las fases a fin de verificar el cumplimiento de los requisitos.

Las fases que conforman la metodología son:

- Planificación
- Diseño
- Codificación
- Prueba

GRÁFICO N° 1 METODOLOGÍA XP

Fuente: Camilo Gonzales "Metodología ágil XP aplicado, análisis diseño e implementación de una aplicación web para la automatización de administración" 2012 Elaborado por: Chalen Freire Mario Irwing

2.2.1 Fase 1: Planificación

En esta fase se recopilan todos los requerimientos del proyecto, se realizan entrevistas y reuniones con los usuarios y se planifica junto con los desarrolladores lo que se quiere realizar, para poder alcanzar los objetivos finales.

2.2.2 Fase 2: Diseño

En esta fase el usuario interviene aportando ideas para realizar la interfaz gráfica del sistema, y posteriormente desarrollar el diseño lógico, el cual está compuesto de lo siguiente:

- Diseño de Datos
- Diseño arquitectónico
- Diseño procedimental
- Diseño de la interfaz

2.2.3 Fase 3: Codificación

En la fase de codificación se realiza todo lo concerniente a la programación, para ello es indispensable la participación del usuario verificando que se cumpla todo lo que ha sido planificado y diseñado para el desarrollo del sistema.

2.2.4 Fase 4: Pruebas

En esta fase se realizan los test para comprobar el funcionamiento del sistema, para ello se debe contar con la aprobación del usuario y posteriormente proceder a documentar la aceptación.

Marco teórico 13

2.3 Estudio de Factibilidad: Tecnológica, Operativa y Económica.

Factibilidad 2.3.1

El estudio de factibilidad permite conocer al investigador si cuenta

con los recursos necesarios para implementar un proyecto, estos recursos

pueden ser: económicos, tecnológicos y operativos.

Se ha analizado la factibilidad del sistema de simulación que se va

a desarrollar desde tres puntos de vista:

2.3.1.1 Factibilidad Tecnológica

El sistema de simulación de procesos de producción de cacao,

será desarrollado en un computador que se ha puesto a disposición del

autor del tema por parte de la planta procesadora de semillas certificadas

de la Universidad de Guayaquil. Este computador cuenta con las

características técnicas necesarias tanto de Hardware y de Software.

A continuación se describen las características del equipo:

Hardware

Procesador Intel Core i3

Pantalla LG 19"

Disco duro 1000 Gb

Memoria 4Gb

Software

Sistema operativo: Windows. Versión: 8.1

Ide de desarrollo: Netbeans, Version: 8.0.2

Base de Datos: MySql 10

.NET Framework 4.5

El software utilizado en su totalidad para el desarrollo del simulador es libre, amparado bajo la licencia GPL, por lo tanto, se determina que tecnológicamente es factible para el desarrollo del sistema.

El sistema será instalado inicialmente en un computador para que luego de un tiempo de uso, sea colocado en otros equipos de la planta.

2.3.1.2 Factibilidad Operativa

El sistema de información cuenta con las características funcionales necesarias para su uso, las cuales se detallan a continuación:

- Facilidad de uso: por medio de una interfaz de usuario amigable
- Información actualizada: por medio de una base de datos que centralizará la información y la disponibilidad de la misma
- Ahorro de recursos: por medio de la simulación del sistema, lo cual evitará pérdidas y minimizará los tiempos de producción.

En base a lo expuesto se determina que operativamente es factible el desarrollo del sistema.

2.3.1.3 Factibilidad Económica

La planta ya cuenta con los equipos necesarios para el desarrollo del sistema, por lo tanto, no es necesario adquirir equipos nuevos y no representa un costo para el proyecto, así mismo se utilizará software libre con licencia GPL lo cual no representa un costo adicional de licenciamiento para la implementación del sistema.

El sistema proporcionará gran beneficio a la planta ya que permitirá realizar los procesos de producción por medio de la simulación, evitando así los gastos y pérdidas que frecuentemente se dan al realizarlos manualmente.

Además, al obtener resultados que cumplan los requerimientos exigidos por los clientes extranjeros, se evita que varios lotes sean rechazados y vendidos en el mercado local a un menor precio, teniendo, así como resultado una mayor cantidad de cacao fino de aroma de exportación y aumentando exponencialmente la rentabilidad de la planta.

Por todo lo anterior se determina que económicamente es factible el desarrollo del sistema.

2.4 El Cacao Ecuatoriano

Ecuador es el país con la mayor participación en el segmento del mercado del cacao a nivel mundial, esto representa un 63% de acuerdo a estadísticas de Pro Ecuador.

En el año 2011, recibió el premio como "mejor cacao por su calidad floral" y "mejor grano de cacao por región geográfica" en el Salón du Chocolat en París, Francia.

Durante el período Colonial y luego durante la República, la economía de lo que hoy constituye Ecuador, ha estado fuertemente ligada a la producción del cacao, siendo unos de los productos de mayor exportación y que ha generado fuentes de trabajo directas e indirectas.

En Ecuador existe un tipo de cacao único en el mundo conocido con el nombre de Cacao Nacional o "ARRIBA", caracterizado por su sabor

floral, es reconocido internacionalmente con la clasificación de Cacao Fino de Aroma y es el más solicitado a nivel de exportaciones.

El 24 de marzo del 2008, el Ecuador declaró al cacao fino de aroma, Cacao "ARRIBA", como la primera denominación de origen (DO) del país. Este reconocimiento exalta la alta calidad del producto que presenta características determinadas por su procedencia y por los conocimientos ancestrales involucrados en su cultivo.

En ese sentido, en el 2014 el Instituto Ecuatoriano de la Propiedad Intelectual, presentó el Sello de la DO, que es una marca que garantiza su excelencia.

El cacao nacional o fino y de aroma que produce el Ecuador, al ser uno de los más apetecidos a nivel mundial, debe cumplir con requisitos de calidad muy específicos.

CUADRO N° 1
REQUISITOS DE CALIDAD DEL CACAO EN GRANO BENEFICIADO

ARRIBA					CCN51		
REQUISITOS	UNIDAD	A.S.S.P.S	A.S.S.S	A.S.S	A.S.N.	A.S.E.	CCNST
Cien granos pesan	g	135-140	130-135	120-125	110-115	105-110	135-140
Buena fermentación (mín.)	%	75	65	60	44	26	***65
Ligera fermentación* (mín.)	%	10	10	5	10	27	11
Violeta (máx.)	%	10	15	21	25	25	18
Pizarroso (pastoso) (máx)	%	4	9	12	18	18	5
Moho (máx.)	%	1	1	2	3	4	1
TOTALES (análisis sobre 100	%	100	100	100	100	100	100
pepas)							
Defectuosos (análisis sobre	%	0	0	1	3	**4	1
500 gramos) (máx).							
TOTAL FERMENTADO (mín.)	%	85	75	65	54	53	76
A.S.S.P.S	Arriba Su	perior Summe	r Plantación	selecta			
A.S.S.S	Arriba Su	perior Summe	er Selecto				
A.S.S.	Arriba Sup	perior Selecto					
A.S.N.	Arriba Sup	perior Navida	t				
A.S.E.	Arriba sup	erior Época					

Fuente: Instituto Ecuatoriano de Normalización Elaborado por: Chalen Freire Mario Irwing

2.4.1 Tratamiento de post cosecha del cacao

Se denomina así al conjunto de prácticas interrelacionadas que tienen que ver con la transformación biológica que deben sufrir las semillas una vez cosechadas y que permiten la expresión de su real potencial de calidad, su valoración y demanda por los procesadores de la industria chocolatera y el mercado exterior, constituye en buena parte el aspecto de máxima importancia para preservar y presentar al mercado un producto de calidad. El buen proceso de post cosecha asegura que el grano sea apreciado, apetecido por la industria, lo que justifica un mejor precio y garantiza su comercialización al mercado nacional y de exportación. (Bravo Ramirez, 2010).

Los procesos para desarrollar la máxima calidad posible del cacao, exigen ejecutar sistemáticamente todos los pasos de la post cosecha, que abarcan desde: la selección de las mazorcas que se cosechan, la quiebra, el desgrane, un correcto proceso de fermentación, secado óptimo, y finalmente una exigente limpieza y clasificación del grano.

Ecuador para mantener su lugar de privilegio en el mercado mundial, se ve en la necesidad de aumentar el nivel de la calidad de su cacao, uno de los productos de exportación más importantes para la economía nacional, para lograrlo, entre otras cosas, necesita mejorar sustancialmente el manejo de los procesos de post cosecha del cacao en grano, tema muy investigado, tanto a nivel local como internacional.

Los procesos de la post cosecha son fundamentales debido a que son los factores condicionantes de la calidad, tanto del cacao, como de los productos que se obtienen de él.

El proceso de Post cosecha consta de las siguientes fases:

Fase 1: Ingreso de Cacao

Fase 2: Fermentación Anaeróbica

Fase 3: Cacao en tendal

Fase 4: Fermentación Aeróbica

Fase 5: Secado artificial

Fase 6: Resultados.

A continuación, se describen las tres últimas fases en las cuales está enfocado el presente trabajo de titulación:

2.4.2 Fermentación aeróbica

Denominado también beneficio, cura o preparación. Es un proceso bioquímico interno y externo de la semilla en la que ocurren cambios notables en su estructura.

Durante la fermentación, la baba de cacao, se descompone en sustancias líquidas. El azúcar del cacao se convierte en alcohol, y posteriormente en ácido acético. Gran parte del cacao escapa en forma de exudado. (Paz, 2012).

Elementos que intervienen en la fermentación del cacao:

- El tipo de cacao a fermentarse.
- Tiempo de cosecha de la mazorca antes de ser abiertos.
- El tipo de fermentación utilizado.
- El tiempo de la fermentación y lapso de remoción de la masa fermentante.

La fase aeróbica o acética se produce por la acción de una bacteria del grupo Acetobacter, que transforma el etanol en ácido acético, el cual penetra dentro de la semilla produciendo cambios que originan sustancias que dan buen sabor y aroma al cacao.

Dada la importancia de esta fase debe ser contemplada en el sistema de simulación de procesos de producción, el cual realizará cálculos químicos mediante ecuaciones para determinar el grado de transformación y la cantidad de elementos que pierde el grano de cacao en esta fase de fermentación Aeróbica.

El sistema de simulación de procesos de producción de cacao, deberá ser flexible de tal manera que dependiendo de las variables que ingrese el usuario, el sistema escogerá la ecuación más adecuada para tener los resultados deseados.

2.4.3 Secado artificial

Se realiza mediante el uso de secadoras y por lo general se las utiliza en zonas donde no es posible realizar el secado natural debido a la baja incidencia de la luz solar directa.

Sobre el secado se han realizado pocos estudios, éste trabajo que incluye una fase de secado artificial puede aportar con nuevos datos que sirvan para optimizar el proceso de Producción de Post cosecha. Esta fase se la realizara con una máquina automática que gira a 360° manteniendo una temperatura controlada, permitiendo dar un secado uniforme hasta llegar al porcentaje de humedad requerido de las almendras de cacao.

Los cambios que se hayan producido durante esta fase serán registrados en el sistema de simulación de procesos de producción de cacao, de tal manera que se obtengan datos más correctos de las

variables de temperatura y tiempo adecuados, a fin de obtener un mejor resultado.

2.5 Ecuaciones químicas

Las ecuaciones químicas son las expresiones esquemáticas que a través de símbolos y formulas grafican los cambios producidos en una reacción. La ecuación puede ser expresada por medio de símbolos y fórmulas de las substancias participantes.

El sistema de simulación de procesos de producción de cacao, utilizará ecuaciones químicas para calcular las propiedades del cacao especificadas por el usuario; el sistema mostrará la ecuación específica de acuerdo a las variables, mostrando los cambios de composición que van afectando al grano de cacao durante cada una de las fases del proceso de Post cosecha.

2.6 Sistema de información

Un Sistema de Información es el Conjunto total de procedimientos, operaciones, funciones y difusión de datos o información en una organización. (Cauca, 2016)

El sistema de simulación, es producto de la interacción de varios elementos tales como: datos, variables de cacao, procesos de producción de post cosecha, equipos de computación, programas y talento humano. Todos estos elementos dan origen a la creación del sistema de información.

2.6.1 Simulación

La simulación es el arte y ciencia de crear una representación o sistema para los propósitos de experimentación y evaluación.

Según la RAE (Real Academia de la Lengua Española) es la alteración aparente de la causa, la índole o el objeto verdadero de un acto o contrato, mientras que (Ovalle Pinilla, 2014) cita como una herramienta útil para comprender el funcionamiento de un sistema y evaluar la respuesta del mismo a cambios en diferentes componentes internos o externos del sistema.

La simulación de procesos es una de las herramientas más grandes e interdisciplinarias de la ingeniería industrial, la cual se utiliza para representar un proceso mediante otro que lo hace mucho más simple y entendible.

Una simulación realizada dentro del sistema de información, permitirá obtener los datos requeridos para estudiar las conductas que se obtienen durante los procesos de la post cosecha.

2.6.2 Lenguaje de programación

El lenguaje de programación es la herramienta que permitirá desarrollar Software en manera de código, es decir, es la herramienta mediante la cual se codificara el sistema de simulación de procesos de producción.

En el presente trabajo se utiliza el lenguaje de programación java.

2.6.3 Java

Java es un lenguaje de programación rápido, seguro y fiable. Actualmente es utilizado en ordenadores personales, consolas de videojuegos, grandes centros de datos, hasta en teléfonos móviles.

Java es un lenguaje de desarrollo de propósito general, y como tal es válido para realizar todo tipo de aplicaciones profesionales. Incluye una

combinación de características que lo hacen único y está siendo adoptado por multitud de fabricantes como herramienta básica para el desarrollo de aplicaciones comerciales de gran repercusión.

2.6.4 Netbeans 8.0.2

NetBeans IDE es un entorno de desarrollo visual de código abierto para aplicaciones programadas mediante Java, uno de los lenguajes de programación más poderosos del momento, pero puede servir para desarrollar cualquier otro lenguaje de programación.

NetBeans es un entorno ideal porque permite el desarrollo de la programación en java, además se puede realizar la prueba y la depuración que se desarrollan. Todo esto hace que NetBeans sea la plataforma ideal para desarrollar el sistema.

2.6.5 Base de datos

Una base de datos es un sistema informático a modo de almacén. En este almacén se guardan grandes volúmenes de información. (Sierra, 2015).

El sistema de información de procesos de producción de cacao requiere de un almacenamiento de datos para registrar toda la información que se produzca en él, para posteriormente poder consultar, actualizar o dar el uso que sea necesario de esta información, por lo cual en este trabajo se ha seleccionado la base de datos Mysql en su versión 10.0.

2.6.6 Mysql 10.0

MySQL es un sistema gestor de bases de datos relacional rápido, sólido y flexible. Es idóneo para la creación de bases de datos con acceso

desde páginas web dinámicas, así como para la creación de cualquier otra solución que implique el almacenamiento de datos, posibilitando realizar múltiples y rápidas consultas.

Está desarrollado en C y C++, facilitando su integración en otras aplicaciones desarrolladas también en esos lenguajes. (EcuRed, 2015)

Es un sistema gestor de Base de Datos muy conocido y ampliamente usado por su simplicidad y alto rendimiento, siendo una herramienta que posee un tiempo reducido en puesta en marcha, un alto grado de estabilidad y un rápido desarrollo. (Santillán, Ginestà, & Mora, 2015).

El sistema de simulación de procesos de producción de cacao utilizará el gestor de base de datos Mysql debido a su alto rendimiento y simplicidad. Mysql puede ser obtenido en internet bajo licencia GPL que no tiene ningún costo.

Para la realización del presente trabajo se ha seleccionado como referencias dos tesis, que han contribuido con la sistematización de los procesos de producción tanto de café como de cerveza.

2.7 Reseñas

Reseña N° 1

Tema: Análisis y diseño de un sistema de automatización industrial en una planta de elaboración de cerveza.

Problema: Manejo manual de los procesos de monitoreo de las etapas de pasteurización de la cerveza.

Solución: El sistema ayudó a recuperar el 5% de cerveza despachada anualmente.

Análisis: Esta tesis contribuye en el presente trabajo, con la estimación de costes requeridos para la implementación del tema.

Reseña Nº 2

Tema: Simulación de procesos industriales en una planta de café soluble.

Problema: Procesos manuales con altos índices de desperdicio de materia prima.

Solución: El sistema redujo en gran medida los costes, corrigiendo el desperdicio del café en los procesos de fermentación y secado.

Análisis: Esta tesis aporta en el presente trabajo, con las ecuaciones químicas que sirven de base para los cálculos necesarios que se utilizan en los procesos de fermentación y secado del cacao.

CAPÍTULO III

METODOLOGÍA

3.1 Metodología de desarrollo de Software

La metodología en el cual se ha desarrollado el sistema es la Programación extrema (XP).

El sistema de información que simule los procesos de producción de cacao orgánico de exportación al estar basado en la metodología de desarrollo de software XP, tendrá un enfoque práctico y rápido, permitiendo hacer entregas cortas de software a los clientes de manera que les aporten gran valor.

3.1.1 Planeación

Se recopilará toda la información para conocer el estado actual de la planta, sus problemas y necesidades, mediante las técnicas de recolección de datos como entrevistas y encuestas.

Luego se analizará toda la información obtenida que servirá para establecer los requerimientos funcionales y no funcionales y conocer así la naturaleza del sistema que se debe desarrollar.

3.1.1.1 Análisis de la investigación

Para el levantamiento de información del presente trabajo, se utilizan los tipos de investigación experimental e histórica.

El tipo de investigación experimental permitirá la manipulación de las variables en condiciones controladas mediante la simulación.

Será aplicado en los procesos de fermentación aeróbica y secado artificial, con el fin de poder determinar los resultados que permitan llegar a los requerimientos establecidos por el cliente.

El tipo de investigación histórica permite tener una concepción objetiva y exacta de los diferentes estudios y tratamientos realizados anteriormente sobre los procesos de fermentación y secado, para ello se recolectará, evaluará y verificará la información de manera sistemática obteniendo así conclusiones válidas que servirá de base para el desarrollo de la investigación.

3.1.1.2 Población

Las personas que intervinieron durante el proceso de levantamiento de información son 8, las cuales están involucradas en el proceso de post cosecha y exportación de cacao, y fueron consideradas como muestra para el levantamiento de información. Miembros que conforman la población:

- Julio Cerezo Valenzuela, Presidente Apovinces
- José Sotomayor Montiel, Vicepresidente Apovinces
- Ángela Macías Zuloaga, Prosecretario
- Vicente Fuentes Ullón, Primer Vocal
- Luis Carriel Mendoza, Segundo Vocal
- Gardenia Gonzáles, Ingeniera Agrónoma
- Jenny Casquete Santillán, ingeniera Agrónoma
- John James Quiroz, Programa de Cacao INIAP

3.1.1.3 Muestra

Para el desarrollo del presente trabajo no se aplica la fórmula muestral debido a que la cantidad de individuos objetos de estudio es mínima, por lo tanto, la población es igual a la muestra.

3.1.1.4 Técnicas de observación y recolección de datos

La aplicación de técnicas es indispensable para el desarrollo de la investigación, la cual pretende los siguientes objetivos:

- Ordenar las etapas de la investigación.
- Aportar instrumentos para manejar la información.
- Llevar un control de los datos.
- Orientar la obtención de conocimientos.

Para el tipo de investigación experimental se utilizará la técnica de la observación, la cual permite admirar los hechos que ocurren en los procesos de producción de la post cosecha que actualmente maneja la planta, con ello se podrá analizar las mejoras que se pueden aplicar para la optimización de los procesos en mención.

Para el tipo de investigación histórica se utilizará la técnica de la entrevista, la cual permitirá obtener información más concreta referente a los problemas que frecuentemente se presentan en la planta durante el proceso de post cosecha y los resultados de experimentaciones anteriores. Los datos obtenidos servirán de base para realizar las ecuaciones del sistema.

La entrevista será aplicada a la población objeto de estudio anteriormente mencionada.

3.1.1.5 Los instrumentos de recolección de datos

3.1.1.6 Observación

Los directivos permitieron el acceso a la planta para observar los procesos de post cosecha del cacao.

Durante una semana se observó lo siguiente:

- Recipientes inadecuados para el almacenamiento de granos de cacao.
- No existe control de los residuos de la baba de cacao durante el proceso de Fermentación.
- Tratamiento de aguas residuales no adecuados.
- Proceso de secado artificial manual no óptimo, lo que conlleva a un secado del grano de cacao muy desigual.
- Existencia de una diferencia de humedad en la almendra de cacao.
- Infraestructura para el almacenamiento del producto final es inadecuada.
- El área de almacenamiento y el área del secado al no disponer de una infraestructura adecuada, no cuentan con una correcta separación y se produce una contaminación cruzada.

Se utilizó preguntas cerradas y abiertas, Ver Anexo #1 "Encuesta: dirigida a la población que interviene en los procesos de post cosecha de la planta procesadora de semillas Apovinces", como instrumento de apoyo para obtener la información. Este cuestionario se lo realizó de forma presencial para obtener resultados precisos por medio de las explicaciones de la población.

La encuesta utilizada para el presente proyecto se la realizó bajo preguntas cerradas, Ver Anexo #2 "Encuesta: dirigida a la población que interviene en los procesos de post cosecha de la planta procesadora de semillas Apovinces". Para una mejor comprensión las preguntas fueron diseñadas por categorías, a continuación, se presenta las secciones de la encuesta:

- 1. A quien va dirigido
- 2. Perfil del encuestado
- 3. Manejo interno de la planta
- 4. Automatización

Las preguntas han sido formuladas con relación a todo el proceso de post cosecha de cacao.

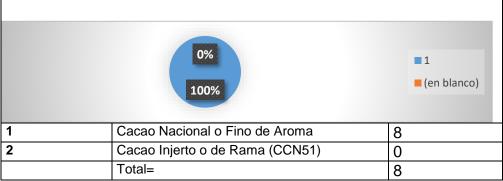
3.1.1.7 Procedimiento

El procedimiento utilizado para hacer investigación dentro de la Planta procesadora de semillas de cacao, fue el siguiente:

- Levantamiento de información aplicando la investigación de tipo experimental e histórica.
- 2) Uso de las técnicas de entrevista y observación: Observación: procesos y problemas que se presenta en la planta desde el punto de vista del investigador, sin alterar los hechos de la misma.

Entrevista: banco de preguntas dirigidas a la población que interviene en los procesos de post cosecha de la planta procesadora de semillas Apovinces, ayudando a puntualizar los problemas que se presentan en la planta.

- 3) Utilización de los instrumentos empleados para esta investigación:
- a. Entrevistas: realizadas a través de preguntas abiertas


- b. Encuestas: realizadas a través preguntas cerradas
- 4) Análisis de los datos obtenidos con dos herramientas:
- Lluvia de ideas: Para el análisis de los datos se utilizó la lluvia de ideas, la cual permite tener una perspectiva sobre los problemas más importantes que se presentan. Se realizó la lluvia de ideas con la colaboración conjunta de los directivos de la planta para obtener una información variada y directa respecto a los problemas que afectan la planta.
- Diagrama de Ishikawa: Se podrá puntualizar la información obtenida de la técnica lluvia de ideas, permitiendo analizar las causas y efectos que pueden originar el problema de la baja producción de la post cosecha.

3.1.1.8 Las técnicas de análisis

De la encuesta realizada a la población que interviene en los procesos de post cosecha de la planta procesadora de semillas, se han obtenido los siguientes resultados: Ver Anexo #3

3.1.1.9 Análisis de la encuesta

GRÁFICO N° 2 ¿QUÉ TIPO DE CACAO LLEGA A LA PLANTA?

Fuente:Encuestas

Se puede observar que el tipo de cacao con que trabaja la planta de semillas certificadas es 100% cacao fino de aroma, ya que es el tipo de cacao predilecto de los mercados extranjeros.

GRÁFICO N° 3 ¿A CUÁL DE LOS SIGUIENTES MERCADOS VA DIRIGIDO EL CACAO UNA VEZ PROCESADO?

	0%; 0% 100%; 100%	■ 4 ■ (en
1	Local	0
2	Regional	0
3	Nacional	0
4	Internacional	8
	Total=	8

Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

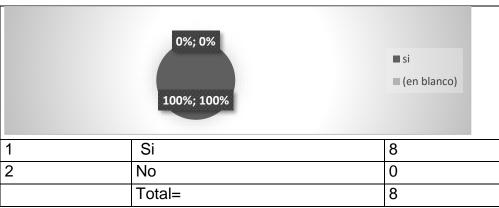
En esta pregunta se puede observar que el mercado principal al que apunta la planta de semillas se encuentra en el exterior, ya que el cacao fino de aroma tiene una mayor acogida por poseer mayor calidad, además de representar mejores ingresos económicos.

GRÁFICO N° 4 ¿HAN CONSIDERADO LOS DIRECTIVOS DE LA PLANTA INTRODUCIRSE EN EL NEGOCIO DE CULTIVO DEL CACAO?

Fuente: Encuestas

El 63% de los entrevistados están de acuerdo con tener cultivos propios como medio alterno en caso de que alguno de los asociados decida independizarse, mientras que el 38% de los directivos opina que no es necesario.

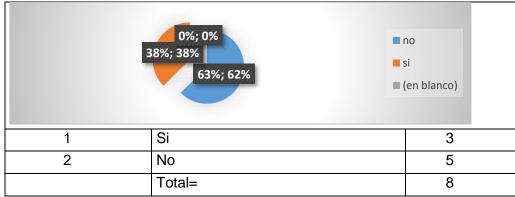
GRÁFICO N° 5 ¿LOS PRODUCTORES SE ENCUENTRAN DE ACUERDO CON EL PORCENTAJE DE PRODUCCIÓN ALCANZADO POR HECTÁREA EN EL PROCESO DE FERMENTACIÓN Y SECADO?


	0%; 0% 100%; 100%	■ no ■ (en blanco)
1	Si	0
2	No	8
	Total=	8

Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

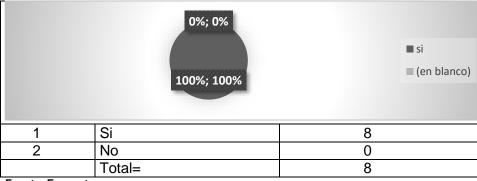
Se puede observar que el 100% de los encuestados señalaron no estar satisfechos con los niveles de producción actuales de la planta.


GRÁFICO N° 6 ¿ES ALTA LA PÉRDIDA DE LOS LOTES DE CACAO AL EXPORTAR LOS MISMOS?

Fuente: Encuestas

Los resultados obtenidos indican en un 100% que las pérdidas causadas por el rechazo de lotes de exportación son altas.

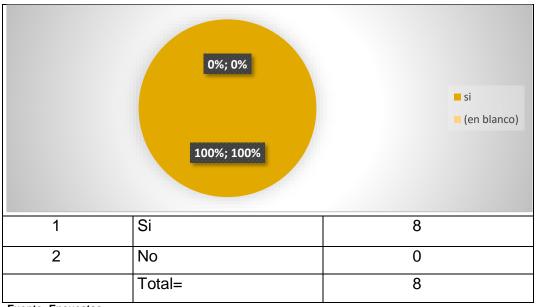
GRÁFICO N° 7
¿SE HA DISEÑADO MECANISMOS PARA DARLES UN
TRATAMIENTO TÉCNICO A LOS DESPERDICIOS DE LA BABA DE
CACAO DURANTE EL TRATAMIENTO DE LA FERMENTACIÓN?



Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

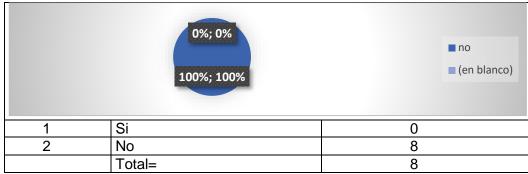
En esta pregunta se observa que el 38% de los resultados afirman que, si se han diseñado mecanismos para el tratamiento técnico de los desperdicios de la baba de cacao, pero no se han implementado por una serie de factores.


GRÁFICO N° 8 ¿EN EL PROCESO DE FERMENTACIÓN DE CACAO SE PIERDEN MUCHAS LIBRAS PARA OBTENER EL GRADO DE ACIDEZ REQUERIDO?

Fuente: Encuestas

Los resultados indican que, durante el proceso de fermentación, al realizar pruebas físicas para la obtención de resultados se pierden muchas libras de cacao, dando como resultado menos producto para exportar

GRÁFICO Nº 9
¿CONSIDERA NECESARIO EL ASESORAMIENTO TÉCNICO SOBRE
LA CANTIDAD DE ELEMENTOS QUÍMICOS QUE DEBE UTILIZARSE
EN UNA DETERMINADA CANTIDAD DE CACAO PARA LOS
PROCESOS DE FERMENTACIÓN Y SECADO?


Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

El 100% de la población indica que es necesario un asesoramiento técnico sobre los elementos químicos que deben utilizar durante el proceso de post cosecha para mantener altos estándares de calidad de cacao orgánico fino de aroma.

A continuación se observará el gráfico N° 9, dónde la planta procesadora de semillas cuenta con maquinaria que ayuden automatizar el tiempo en los procesos de la post cosecha.

GRÁFICO Nº 10
¿ACTUALMENTE LA PLANTA PROCESADORA DE SEMILLAS
CUENTA CON MAQUINARIAS QUE AYUDEN A AUTOMATIZAR EL
TIEMPO EN LOS PROCESOS DE LA POST COSECHA?

Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

La planta procesadora de semillas certificadas no utiliza ningún instrumento que aporte con el mejoramiento de producción de post cosecha.

GRÁFICO N° 11
¿CONSIDERA USTED CONVENIENTE LA APLICACIÓN DE UN
SISTEMA DE INFORMACIÓN PARA AUTOMATIZAR LOS PROCESOS
DE INGRESO, FERMENTACIÓN Y SECADO?

Fuente: Encuestas

Elaborado por: Chalén Freire Mario Irwing

Se puede observar que el 100% de los entrevistados indicaron que una aplicación que aporte a los procesos de post cosecha sería muy positiva para la planta.

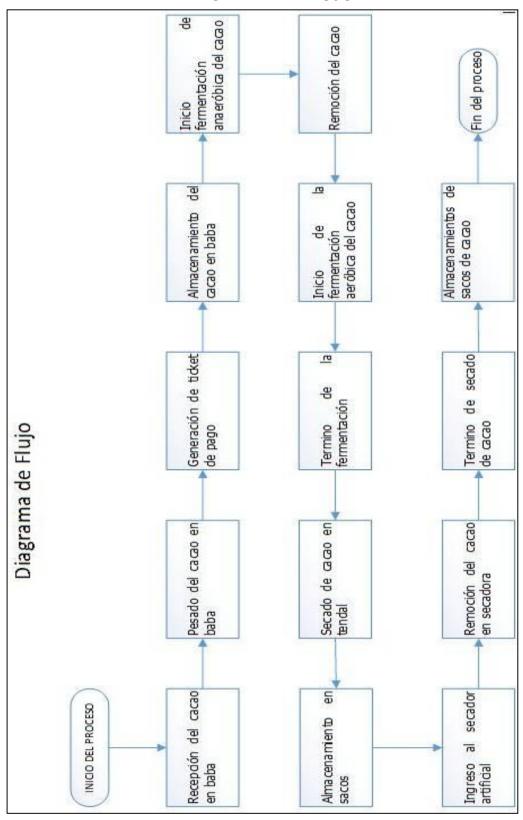
3.1.1.10 Conclusión

Después de haber analizado los resultados obtenidos en la encuesta realizada, se concluye que es necesario la implementación del sistema de información que simula los procesos de producción de cacao orgánico de exportación, el cual ayudará a mejorar los procesos de fermentación aeróbica y secado artificial de la planta.

Adicionalmente mediante un módulo de reportes, se facilitará el acceso a la información de todos los resultados obtenidos de los procesos realizados.

Así mismo los directivos están abiertos a las capacitaciones técnicas que sean necesarias para implementar el sistema en la planta.

3.1.2 Descripción de la situación actual

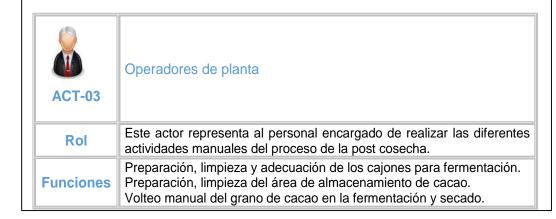

Según la información recopilada en las entrevistas y encuestas se puede determinar cómo se está llevando el proceso de post cosecha currente en la planta.

Se observó el tiempo y los problemas que se están presentando en los procesos de fermentación aeróbica y secado artificial, además los recursos que se están utilizando en estos procesos. Actualmente no se está utilizando ningún sistema informático que ayude a agilitar y mejorar los procesos de la post cosecha de la planta.

El procedimiento vigente utilizado está presentado inconvenientes como el desperdicio de materia prima y bajos niveles de producción.

A continuación, se presenta el diagrama de flujo del proceso de post cosecha que se realiza actualmente en la planta de semillas.

DIAGRAMA N° 1 DIAGRAMA DE FLUJO


3.2 Listado de los actores con sus roles y funciones

CUADRO N° 2 LISTADO DE LOS ACTORES CON SUS ROLES Y FUNCIONES

ACT-01	Director de la planta / Administrador del sistema
Rol	Este actor representa la persona responsable de la toma de decisiones de la planta procesadora de semillas.
Funciones	Supervisar el buen funcionamiento de la planta. Negociaciones de exportaciones. Crear y/o eliminar usuario. Encargado de realizar la simulación de los procesos. Administración total del sistema.

Son las personas involucradas en el levantamiento de información

ACT-02	Operador de ingreso
Rol	Este actor representa la persona que recepta el cacao e ingresa los datos al sistema
Funciones	Ingresa al sistema la información de los proveedores. Ingresa al sistema la cantidad de cacao que llega a la planta. Apoya en las operaciones manuales en las etapas de post cosecha.

ACT-04	Jefe de laboratorio
Rol	Este actor representa a la persona encargada de realizar las pruebas de calidad del grano de cacao
Funciones	Verifica los elementos químicos que se utilizan en la fermentación y secado del grano de cacao. Verifica el grado de acidez alcanzado al final de la etapa de fermentación aeróbica. Verifica el porcentaje de humedad del grano de cacao obtenido al final de la etapa de secado artificial.
ACT-05	Proveedor
Rol	Este actor representa a los pequeños agricultores que abastecen de cacao en baba a la planta procesadora de semillas.
Funciones	Entrega de cacao en baba. Cobra la materia prima.

Fuente: Investigación de campo

Elaborado por: Chalen Freire Mario Irwing

3.3 Requerimientos Funcionales

Según la información recopilada en las entrevistas y encuestas se llegó a determinar los requisitos funcionales del sistema de simulación, los cuales indican los requerimientos que deben cumplirse, además describe la interacción entre el sistema y el usuario.

CUADRO N° 3
REQUERIMIENTOS FUNCIONALES

ID	REQUISITO	DESCRIPCIÓN
RF-001	Ingreso de materia prima	El sistema permitirá guardar la cantidad en libras de cacao ingresadas con su respectiva fecha y usuario que realizó la recepción
RF-002	Fermentación Aeróbica	El sistema en esta fase tendrá como variable la cantidad de cacao, se revisaran los elementos químicos que intervienen en la fermentación y se podrá obtener el grado de acidez y la cantidad de cacao que sale de esta fase

RF-003	Secado artificial	El sistema secuencialmente receptará la cantidad de cacao saliente de la fermentación, calculará con cuánta agua ingresa y cuánto va perdiendo. Además se obtendrá el grado de humedad.
RF-004	Reporte de ingreso de cacao	El sistema mostrará la cantidad de cacao ingresado con la respectiva información de fecha y nombre de los proveedores
RF-005	Reporte de fermentación Aeróbica	El sistema mostrará los resultados obtenidos durante la etapa de fermentación aeróbica
RF-006	Reporte de Secado Artificial	El sistema mostrará los resultados obtenidos durante la etapa de secado artificial
RF-007	Reporte de Proveedores	El sistema mostrará los proveedores que han sido previamente ingresados, se los podrá consultar mediante filtros de búsqueda establecidos.
RF-008	Reporte General del proceso de Post Cosecha	El sistema mostrará los resultados de cada una de las fases de la post cosecha

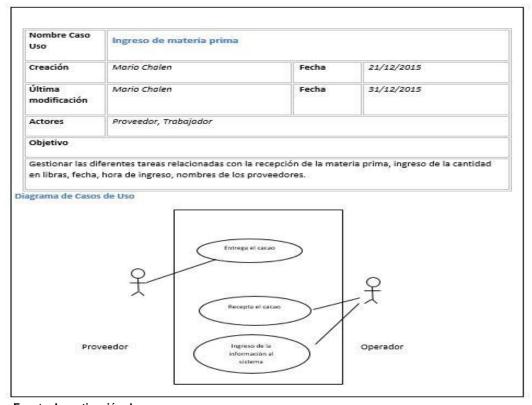
Fuente: Investigación de campo Elaborado por: Chalen Freire Mario Irwing

Requerimientos no funcionales 3.4

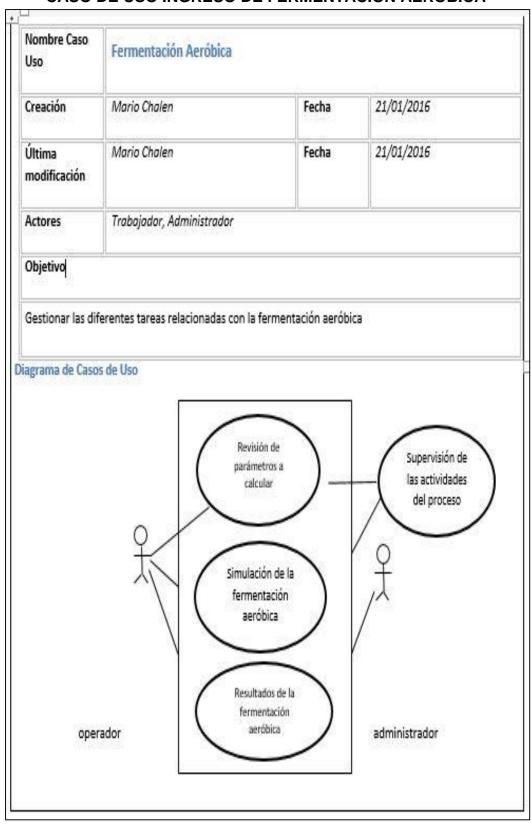
Los requerimientos no funcionales indican las características que debe tener el sistema

CUADRO N° 4 REQUERIMIENTOS NO FUNCIONALES

ID	REQUERIMIENTO
RN-001	Interfaz intuitiva y fácil de usar
RN-002	Se requiere que haya niveles según usuario y contraseña
RN-003	Se requiere que el aplicativo sea de escritorio.


3.5 Diseño

Esta es la segunda etapa de la metodología de desarrollo de software XP, en la cual se diseñarán los requerimientos que han sido levantados en la fase anterior, los diagramas de casos de uso, los casos de uso detallado, diagrama de clases y los diseños de pantallas del sistema.


3.5.1 Diagramas de Casos de usos

Los diagramas de casos de uso muestran de manera dinámica los módulos y la funcionalidad del sistema, así también los actores que participan en la misma. A continuación, se presentan los diagramas de casos de uso:

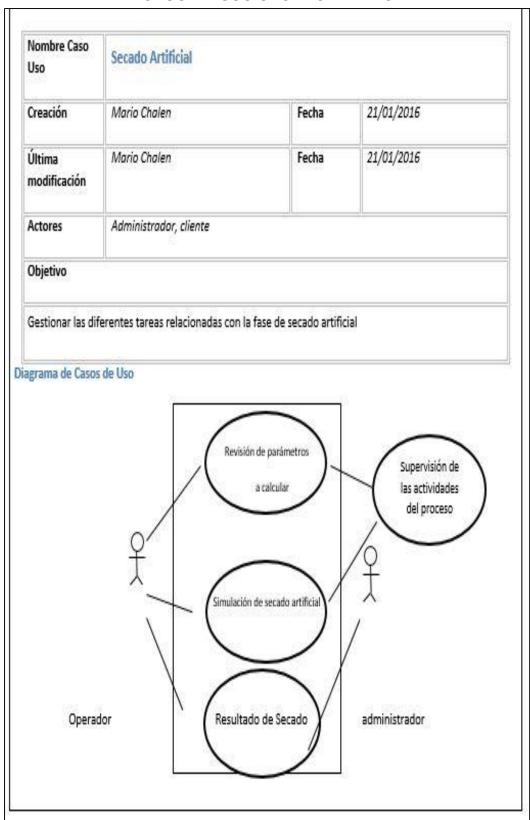

GRÁFICO Nº 12
CASO DE USO INGRESO DE MATERIA PRIMA

GRÁFICO Nº 13 CASO DE USO INGRESO DE FERMENTACIÓN AERÓBICA

GRÁFICO N° 14 CASO DE USO SECADO ARTIFICIAL

CUADRO N° 5 CASO DE USO DETALLADO – INGRESO DE MATERIA PRIMA

Nombre Caso Uso	Ingreso de materia prima		
Creación	Mario Chalen	Fecha	21/12/2015
Última modificación	Mario Chalen	Fecha	31/12/2015
Operador	. · · ·		
Operador Actores Secuni Proveedor	darios		
Actores Secun			

Se ingresa la respectiva información.

Permite almacenar la información registrada

Descripción/Resumen

Propósito/Función

El operador ingresa la información del ingreso del cacao: cantidad, fecha, hora, nombre del proveedor

Paso	Acción de los actores	Respuesta del sistema
1	El caso de uso inicia cuando el proveedor llega a la planta a dejar la matería prima	Ninguna
2	El operador ingresa la información requerida por el sistema	Ingreso y almacenamiento de la información

Fuente: Investigación de campo

CUADRO N° 6 CASO DE USO DETALLADO - FERMENTACIÓN AERÓBICA

Nomb	ore Caso	Fermentación aeróbica			
Creac	ión	Mario Chalen	Fecha	21/12/2015	
Últim modif	a icación	Mario Chalen	Fecha	31/12/2015	
Actor	Principal	e th ic			
Admir	nistrador –	usuario encargado del sist	ema		
Actor	es Secunda	arios			
Opera	idor				
Preco	Precondiciones				
El ope		e haber almacenado correc	tamente la informació	n del ingreso del	
Postc	ondiciones	6:			
El adn	ninistrador	toma el manejo del sistem	na.		
Propó	sito/Funci	ón			
Inicio	de la simu	ación – etapa / módulo de	fermentación aeróbica	1	
Descr	ipción/Res	umen			
	200	perador haya guardado la equeridos e iniciar la simul			

CUADRO N° 7 CASO DE USO DETALLADO- SECADO ARTIFICIAL

Paso	Acción de los actores	Respuesta del sistema
1	Revisión de parámetros (cantidad a calcular, porcentaje de acidez, etc.)	Sistema muestra los parámetros
2	Inicio de la simulación de la fermentación aeróbica	Inicio de los cálculos del proceso de fermentación aeróbica
3	Resultado de la Fermentación aeróbica	El sistema guarda en la base de datos los resultados de esta fase.

Nombre Caso Uso	Secado artificial			
Creación	Mario Chalen	Fecha	21/12/2015	
Última modificación	Mario Chalen	Fecha	31/12/2015	
Actor Principa	al	<u> </u>	<u>"</u>	
Administrado	r – usuario encargado del s	istema		
Actores Secur	ndarios			
operadores				
Precondicion	es			
Debe haber si	mulado la fermentación ae	róbica		
Postcondicion	nes			
El administrac	dor toma el control del siste	ema		
Propósito/Fu	nción			
Inicio de la sir	nulación – etapa / módulo	de fermentación aeróbi	ica	

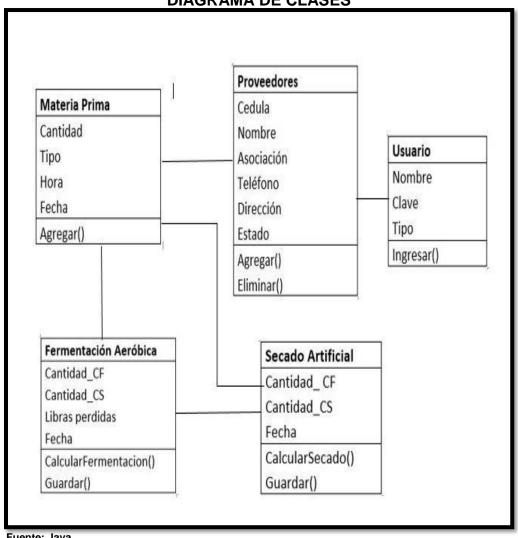
El administrador verificará los parámetros requeridos en el proceso de secado artificial, luego

iniciará la simulación y posteriormente guardará los resultados en la base de datos.

Paso	Acción de los actores	Respuesta del sistema
1	Revisión de parámetros (cantidad a calcular, porcentaje de humedad, etc.)	Sistema muestra los parámetros involucrados en la fase de secado artificial
2	Inicio de la simulación del secado artificial	Inicio de los cálculos del proceso de secado artificial
3	Resultados del secado artificial	El sistema guarda en la base de datos los resultados de esta fase.

Descripción/Resumen

CUADRO N° 8


CASO DE USO DETALLADO - REPORTE DE INGRESO DE CACAO

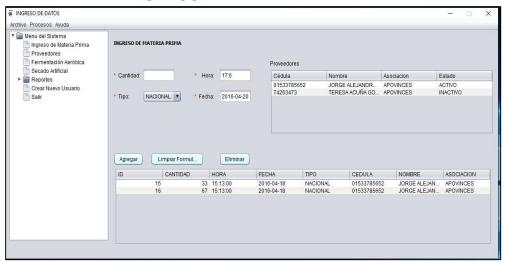
Nombre Caso Uso Reporte de ingreso de cacao				
Creación	Mario Chalen	Fecha	21/12/2015	
Última modificación	Mario Chalen	Fecha	31/12/2015	
Actor Principa	l			
Administrador	– usuario encargado del s	istema		
Actores Secur	darios			
Operador de i	ngreso			
Precondicione	25			
El operador de	ebe haber almacenado corr	rectamente la informaci	ón del ingreso del cacao.	
Postcondicion	es			
El administrad	lor toma el control del siste	ema		
Propósito/Fu	nción			
Consultar la in	formación de ingreso de m	nateria prima almacena	da en el sistema	
Descripción/R	lesumen			
El administrad en el sistema.		ón de ingreso de materi	a prima que ha sido almacenado	

Paso	Acción de los actores	Respuesta del sistema
1	El Administrador selecciona la opción de reportes	Sistema muestra la pantalla con los diferentes tipos de reportes
2	Selección del tipo de reporte ingreso de materia prima	Sistema muestra la información de ingreso de materia prima

3.5.2 Diagrama de clases

DIAGRAMA N° 2 DIAGRAMA DE CLASES

Fuente: Java

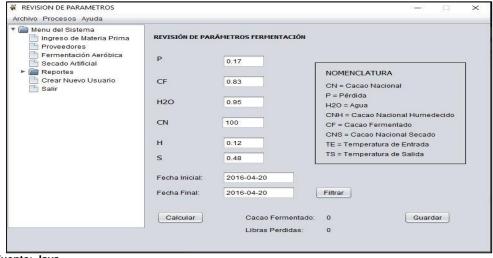

Elaborado por: Chalén Freire Mario Irwing

3.5.3 Diseño de pantallas

Pantalla de Ingreso de Materia prima

En esta pantalla el usuario asignado procederá a realizar el ingreso de la materia prima para posteriormente ser almacenado en la base de datos.

CUADRO N° 9 INGRESO DE MATERIA PRIMA


Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

Pantalla de Fermentación Aeróbica

En la pantalla de fermentación aeróbica el usuario encargado de manejar el sistema procederá a seleccionar la cantidad de cacao a fermentar, así como también el porcentaje de acidez o PH que requiere para que el sistema realice los cálculos correspondientes en esta etapa.

CUADRO N° 10 FERMENTACIÓN AERÓBICA

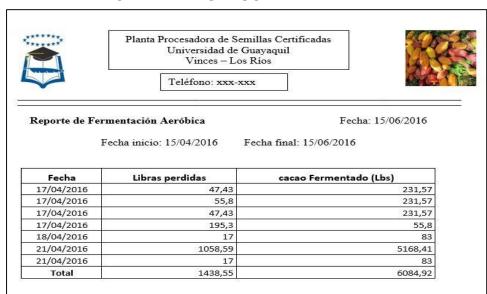
Fuente: Java

Pantalla de Secado Artificial

En la pantalla de secado artificial el usuario seleccionará el porcentaje de humedad requerido para que el sistema realice los cálculos correspondientes en esta etapa.

REVISION DE PARAMETROS X Archivo Procesos Ayuda ▼ 🕋 Menu del Sistema REVISIÓN DE PARÁMETROS DEL SECADO Ingreso de Materia Prima Proveedores Fermentación Aeróbica Cálculos de Cacao Fermentado Secado Artificial ► 📄 Reportes Cacao Fermenta... Libras Perdidas Fecha Crear Nuevo Usuario 231,57 47,43 2016-04-17 1 2 231,57 55,8 2016-04-17 Salir 3 231,57 47,43 2016-04-17 4 55,8 195,3 2016-04-17 5 17 2016-04-18 83 Calcular Cacao Secado: 0 Guardar Libras Perdidas: 0

CUADRO N° 11 SECADO ARTIFICIAL


Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

Pantalla de Reporte de Ingreso

En esta pantalla se mostrará la cantidad de cacao ingresado con la respectiva información de fecha y nombre de los proveedores

CUADRO N° 12 REPORTE DE INGRESO DE MATERIA PRIMA

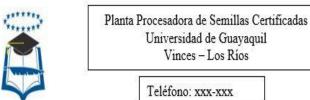
Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

Pantalla de Reporte de Fermentación Aeróbica

En la pantalla de Fermentación aeróbica se mostrarán los resultados obtenidos durante la etapa de fermentación aeróbica

CUADRO N° 13 REPORTE DE FERMENTACIÓN AERÓBICA



Fuente: Java

Pantalla de Reporte de Secado Artificial

En esta pantalla se mostrará los resultados obtenidos durante la etapa de secado artificial.

CUADRO N° 14
REPORTE DE SECADO ARTIFICIAL

Fecha: 15/06/2016

Reporte de Secado Artificial

Fecha inicio: 15/04/2016 Fecha final: 15/06/2016

Fecha	Cacao fermentado	Libras perdidas	
17/04/2016	231.57	47.43	
17/04/2016	231.57	55.8	
17/04/2016	231.57	47.43	
17/04/2016	55.8	195.3	
18/04/2016	83.0	17.0	
21/04/2016	5168.41	1058.59	
21/04/2016	83.0	17.0	

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

Pantalla de Reporte de Proveedores

El sistema mostrará los proveedores que han sido previamente ingresados, se los podrá consultar mediante filtros de búsqueda establecidos.

CUADRO N° 15 REPORTE DE PROVEEDORES

Planta Procesadora de Semillas Certificadas Universidad de Guayaquil Vinces - Los Ríos

Teléfono: xxx-xxx

Reporte de Proveedores

Fecha: 15/06/2016

Nombre: -Asociación: -Estado: -

Cédula	Nombre	Asociación	Teléfono	Dirección	Estado
1533785652	JORGE ALEJANDRO DUQUE CHAVEZ	APOVINCES	987876783	AVE 1RA #320	ACTIVO
963258741	JENNY NARCISA FREIRE ACOSTA	APOVINCES	98745632	AVE 2DA #841	ACTIVO
789654123	MERCEDES FREIRE ACOSTA	APOVINCES	789654123	AVE 3RA CALLE 7B	ACTIVO
7896541230	GUSTAVO BAJAÑA	APOVINCES	789654123	calle 7ma	INACTIVO
7896541236	GIANELLA MANTILLA	APOVINCES	745896321	AVE 4TA CALL 7Y	ACTIVO
8523697412	YOLANDA FREIRE ACOSTA	APOVINCES	745896321	CALLE 3F AVE 4F	INACTIVO

Fuente: Java Elaborado por: Chalén Freire Mario Irwing

CAPÍTULO IV

PROPUESTA

4.1 Título de la propuesta

Sistema de información que simula los procesos de producción de cacao orgánico en sus etapas: fermentación aeróbica y secado artificial.

4.2 Objetivos

- Proponer una herramienta tecnológica que permita mejorar los procesos de fermentación aeróbica y secado artificial mediante su automatización.
- Minimizar el impacto ambiental de desechos de materia prima, que surgen durante el proceso de la post cosecha.
- Promover el desarrollo de la innovación tecnológica en la producción del cacao y posteriormente aplicarlo en las diferentes ramas de la agricultura.

4.3 Entorno de Desarrollo de Software

Se utilizará NetBeans IDE como entorno de desarrollo de software, el cual es una plataforma de código abierto con entorno Java.

NetBeans brinda una mayor facilidad en la documentación del código, el cual servirá para que los desarrolladores puedan dar mantenimiento al sistema y generar nuevas versiones en caso de ser necesario.

NetBeans cuenta con el Auto-completado de códigos el cual facilita al programador escoger entre varias opciones la función más eficiente.

Uno de los objetivos de este trabajo es que el sistema pueda servir de base para emplearlo en cualquier rama de la agricultura.

NetBeans contiene MERCURIAL el cual es un módulo que permite llevar el control de las versiones por medio de la función COMMINTS.

El sistema va a funcionar sobre el sistema operativo Windows 8.1.

4.4 Arquitectura

Para el desarrollo del sistema se propone trabajar con la arquitectura "Pipeline", la cual proporcionará una guía para construir el software y poder alcanzar los objetivos del mismo.

La arquitectura "Pipeline" permite ejecutar procesos de dos formas:

- Procesos de manera secuencial. se ejecuta un proceso detrás de otro, de tal manera que la salida de un proceso conforma la entrada de otro.
- Procesos en paralelo. se ejecutan dos o más procesos a la vez, para ello guarda la información temporal en memoria.

Esta arquitectura ayudará a que el sistema cuente con un orden de secuencias, dándole preferencias y capacidades de procesamientos, de tal manera que al finalizar un proceso o salir del flujo, sustente la entrada del siguiente proceso. Por tanto, las ecuaciones de simulación en la etapa de fermentación llevaran un orden de ejecución, hasta llegar a la fase del secado artificial y obtener los resultados finales.

4.5 Metodología

La metodología en la cual se va a desarrollar el sistema es la Programación extrema (XP), que servirá para la realización de la primera versión o prototipo del mismo.

El sistema de información que simula los procesos de producción de cacao orgánico de exportación, al estar basado en la metodología de desarrollo de software XP, tendrá un enfoque práctico y rápido, permitiendo hacer entregas cortas de software a los clientes de manera que les aporten gran valor.

En el capítulo anterior se explicaron las dos primeras fases de la metodología, a continuación, como parte de la propuesta se va a detallar la fase de diseño, y consecutivamente se procederá a explicar la fase de codificación y pruebas.

4.5.1 Diseño

Continuando con el diseño, se analiza la estructura lógica de los datos, la cual consiste en:

- Modelo de Datos
- Modelo entidad Relación
- Diagrama de Actividades
- Diccionario de Datos

4.5.1.1 Modelo de Datos

Permite describir la estructura de la base y la relación entre los datos.

PSC BDP Proveedor PSC_BDP_Ingreso PSC BDP Usuario Id cedula: INTEGER (13) Id cacao: INTEGER(11) Id_login: INTEGER(20) FK(id_login, id_cacao) FK(id_cedula, id_login) Nombre: VARCHAR(40) Cantidad: INTEGER(11) Clave: VARCHAR(20) Hora: TIME Asociación: VARCHAR(40) Nombre: VARCHAR(20) Fecha: DATE Telefono: INTEGER(10) Tipo_usuario: Tipo: VARCHAR(12) VARCHAR(15) Direccion: VARCHAR(30) Proveedor: VARCHAR(12) Estado: VARCHAR(15) FK(id_login, id_cacao1) FK(id_login, id_cacao2) PSC BDP FerAer PSC BDP SecArt

FK(id_cacao2, id_cacao1)

ld cacao2: INTEGER(11)

cantidad_cf: FLOAT(9,3)

cantidad_Cs: FLOAT(9,3)

Fecha: DATE

DIAGRAMA N° 3 MODELO DE DATOS

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

Fecha: DATE

Id cacao1: INTEGER(11)

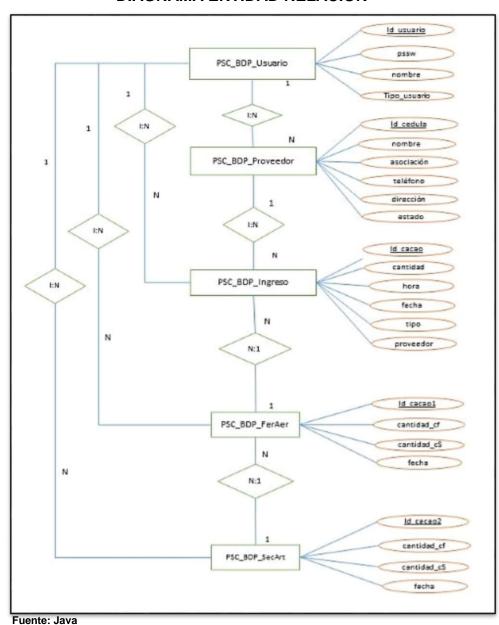
cantidad_cf: FLOAT(9,3)

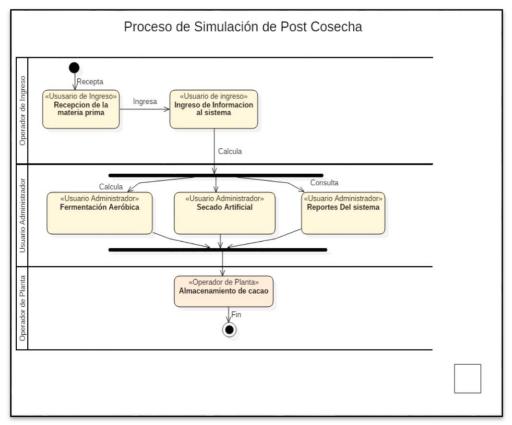
cantidad_Cs: FLOAT(9,3)

4.5.1.1 Modelo Entidad-Relación

El modelo entidad relación muestra cómo están relacionadas las tablas de la base de datos con sus cardinalidades y atributos.

A continuación se observará el gráfico N° --- acerca el diagram de entidad relación.




DIAGRAMA N° 4
DIAGRAMA ENTIDAD RELACIÓN

Elaborado por: Chalén Freire Mario Irwing

4.5.1.3 Diagrama de actividades

El diagrama de actividades permite representar la funcionalidad que tendrá el sistema de simulación, es decir, modela el comportamiento de los procesos del sistema.

DIAGRAMA N° 5 DIAGRAMA DE ACTIVIDADES

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

4.5.1.4 Diccionario de datos

El diccionario de datos es un documento técnico en el cual se explica técnicamente cada dato que conforma la estructura de la base.

Para identificar las tablas que conforman el diccionario de datos se ha utilizado el siguiente estándar: PSC_BDP_" tabla".

A continuación, se explica el estándar:

- 1. PSC_. indica el nombre de la empresa.
- BDP_. indica la relación a una base de datos y el área de la empresa. Ejemplo: Base de Datos (BD) de producción (P)

3. "Tabla". - indica el nombre de la tabla, iniciando la primera letra con mayúscula.

Nota: Para la unión de cada una de las partes anteriores se utiliza un guion bajo "_".

Para crear la tabla "usuario" se empleará el estándar establecido en el siguiente ejemplo:

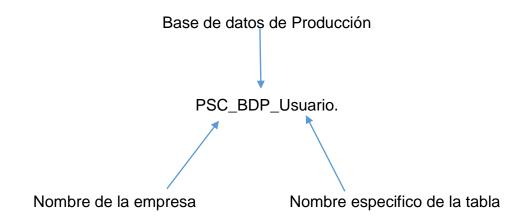


TABLA N° 1 USUARIO

DICCIONARIO DE DATOS		Fecha de elaboracion: 22/12/2015			ema de información que			
Tabla: Usuario	I PSC BDP Usuario		simula los procesos de producción de cacao orgánico de exportación.					
Descripc	ión: Contiene todos lo	os datos del usuario	del si	stema				
Descrip	ción del registro				•			
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null	
1	id_usuario	Código de usuario	PK	Α	VC	5	No	
2	passw	Contraseña para inicio de sesión	E		VC	25	No	
3	nombre	Nombre del usuario	Е		VC	40	No	
4	tipo_usuario	Tipo de usuario	Е		1	1	No	
Observa	ción:	x de						
Ş.	Tipo	Secuencia	Forn	nato numérico	Formato carácter		mato cha	
PK	Clave Primaria	A Automatic a	1	Initeger	C Char	D Dat	e	
FK	Clave Foránea	M Manual	S	Small integer	VC Varchar	DT Da	ate Time	
E	Elemento de Dato		DC M	Decimal Money		j		

Fuente: Java

TABLA N° 2 PROVEEDOR

DICCIONARIO DE DATOS		Fecha de elaboracion: 22/12/2015			ma de información que			
Tabla: Usuario	PSC_BDP_Prove	edor	simula los procesos de producción de cacao orgánico de exportación.					
Descripo	ción: Contiene los date	os del proveedor						
Descrip	ción del registro							
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null	
1	id proveedor	Código del proveedor	PK		1	5	No	
2	identific acion	Cédula/ RUC del proveedor	Е		VC	15	No	
3	nombre	Nombre del proveedor	Е		VC	40	No	
4	tipo_asociacion	Tipo de asociación a la que pertenece	Е		VC	40	No	
Observa	ación:	8			N. 11			
	Tipo	Secuencia	Forn	nato numérico	Formato carácter	44000	rmato echa	
PK	Clave Primaria	A Automatic a	1	Integer	C Char	D Dat	e	
FK	Clave Foránea	M Manual	S	Small integer	VC Varchar	DT D	ate Time	
E	Elemento de Dato		DC M	Decimal Money		11		

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

TABLA N° 3 FERMENTACIÓN AERÓBICA

DICCIONARIO DE DATOS		Fecha de elaboracion: 22/12/2015	Sistema: Sistema de información de simula los procesos de pro		CARLON DONNERS CONTRACTOR			
Tabla: Usuario	PSC RDP ForAer		 simula los procesos de producción de cacao orgánico de exportación. 					
Descripo	ión: Contiene la infori	mación de las ecuacio	nes d	e la fermentac	ion _		Ĭ,	
Descripe	ción del registro						72	
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null	
1	id cacao	Código del cacao	PK		1	5	No	
2	cantidad cF	cantidad en libras del cacao fermentacion	Е		1	15	No	
3	cantidad cS	cantidad en libras del cacao secado	Ε			10	No	
Observa	ción:							
	Tipo	Secuencia	Forn	nato numérico	Formato carácter	(500	mato cha	
PK	Clave Primaria	A Automatic a	1	Integer	C Char	D Dat	е	
FK	Clave Foránea	M Manual	S	Small integer	VC Varchar	DT Da	ate Time	
E	Elemento de Dato		DC M	Decimal Money		l l		

Fuente: Java

TABLA N° 4 **SECADO ARTIFICIAL**

DICCIONARIO DE DATOS		Fecha de elaboracion: 22/12/2015			ema de información que			
Tabla: Usuario	PSC_BDP_Sec/	Art	 simula los procesos de producción de cacao orgánico de exportación. 					
Descripo	ión: Contiene la inf	ormacion de las ecua	cione	s del secado	artificial	8. 8 2 (c		
Descrip	ción del registro							
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null	
1	id_cacao	Código del cacao	PK		1	5	No	
2	cantidad cF	cantidad en libras del cacao fermentacion	Е		1	15	No	
3	cantidad cS	cantidad en libras del cacao secado	Е		1	10	No	
Observa	ación:	***************************************						
	Tipo	Secuencia	Forn	nato numérico	Formato carácter	985	mato cha	
PK FK E	Clave Primaria Clave Foránea Elemento de Dato	A Automatica M Manual	I S DC M	Integer Small integer Decimal Money	C Char VC Varchar	D Dat		

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

TABLA N° 5 INGRESO CACAO

DICCIONARIO DE DATOS Fecha de elaboracion: 22/12/2015 Tabla: Usuario PSC_BDP_Ingreso		elaboracion:	Sistema: Sistema de información que simula los procesos de producción o				
		S0	cacao orgánico de exportación.				
Descripo	ión: Contiene la infor	mación del cacao que	entra	a la planta			
Descrip	ción del registro						
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null
1	id cacao	Código del cacao	PK		1	5	No
2	tipo cacao	Cacao nacional/ cacao CCN51	Е		VC	15	No
3	fecha ingreso	fecha de ingreso del cacao	Е		DT	10	No
Observa	ición:		100		10	50.	
	Tipo	Secuencia	Forn	nato numérico	Formato carácter	8703.00	rmato echa
PK	Clave Primaria	A Auto matica	l Integer		C Char	D Dat	e
FK	Clave Foránea	M Manual	S	Small integer	VC Varchar	DT Da	ate Time
E S	Elemento de Dato		DC M	Decimal Money			

Fuente: Java Elaborado por: Chalén Freire Mario Irwing

TABLA N° 6 CLIENTE

DICCIONARIO DE DATOS		Fecha de elaboracion: 22/12/2015			ema de información que esos de producción de		
Tabla: Usuario	PSC_BDP_Cliente	PSC_BDP_Cliente cacao orgánico de exportación.					
Descripc	ión: Contiene la inforr	mación de clientes					
	ción del registro	Se	100	To .	***		
No.	Nombre del campo	Definición	Tipo	Secuencia	Formato	Long	Null
1	id_cliente	Código del cliente	PK		1	5	No
2	identificacion	DNI	Е		VC	15	No
3	nombre	Nombre del cliente	Е		VC	50	No
4	origen	Pais al que pertenece	Е		VC	20	No
5	Telefono	Número telefonico del cliente	E		VC	10	Si
Observa	ción:		•				
2	Тіро	Secuencia	Forn	nato numérico	Formato carácter	3500	rmato echa
PK	Clave Primaria	A Automatica	1	Integer	C Char	D Dat	е
FK	Clave Foránea	M Manual	S	Small integer	VC Varchar	DT Da	ate Time
E	Elemento de Dato		DC M	Decimal Money			

Fuente: Java

Elaborado por: Chalén Freire Mario Irwing

4.5.2 Codificación

En esta fase se procederá con el desarrollo del sistema de información, para ello es vital la intervención del usuario aportando ideas y verificando que se cumplan los requisitos establecidos en la planificación.

4.5.2.1 Lenguaje de Programación

El sistema será desarrollado en el lenguaje de programación Java v.8, ya que ofrece fiabilidad, rapidez y sobre todo seguridad. Todo esto bajo el entorno de desarrollo integrado libre de NetBeans v.8.0.2.

4.5.2.2 Base de Datos

El sistema de simulación utilizará la base de datos MySql v.10.0, para registrar toda la información que se genere en él.

4.5.3 Pruebas

Se realizarán las pruebas necesarias del sistema, se elaborará la documentación respectiva y se realizará la entrega del sistema al usuario final.

En esta fase se espera tener la aceptación del usuario por medio de un acta de entrega.

A continuación, se enlistan las fases que se realizarán en esta etapa:

4.5.3.1 Fase de Prueba

El proceso de pruebas se realizará a través de las siguientes actividades:

- a) Se realizarán tres tipos de pruebas:
- Prueba funcional, para verificar que se cumplan los requerimientos establecidos por el usuario en la fase de planificación de la metodología XP.
- Pruebas de integración, para verificar que exista una correcta interfaz con el sistema de simulación, que existe en la planta procesadora de semillas y que automatiza las dos primeras etapas del proceso de post cosecha, que son: fermentación anaeróbica y secado en el tendal.
- Pruebas del sistema, para detectar los errores de codificación y funcionalidad, en las cuales intervendrán el programador y el usuario.
- El periodo de tiempo durante el cual se realizarán las pruebas, será de tres semanas.

- Los responsables de ejecutar las pruebas son:
- a. Por parte de los usuarios: el administrador de la planta procesadora
- b. Por parte de tecnología: el autor del tema
- Plan de acción para corregir los errores que subsisten: luego de realizas las distintas pruebas en el periodo establecido y de haber encontrado errores se procederá a la corrección de los mismos, y posteriormente se volverá a realizar los diferentes tipos de pruebas con los responsables de esta fase, a fin de comprobar que los inconvenientes han sido solucionados y el sistema funciona correctamente.
- Aceptación de pruebas: Una vez que el usuario haya verificado que el sistema no contiene errores y funciona según los requerimientos establecidos, se procede a la aceptación de la fase mediante un acta de entrega.

CUADRO N° 16 FASE DE PRUEBAS

Id Caso de prueba	Modulo a probar	Descripción del caso	Pre requisitos	Resultado esperado	Resultado obtenido	Estado
CP001	INGRESO DE MATERIA PRIMA	Verificar que se graben los datos de ingreso de materia prima	- Que exista un proveedor	ок	OK	Concluido
CP002	PROVEEDORES	Verificar que se pueda ingresar y eliminar proveedores	-Ninguno	ок	OK	Concluido
CP003	FERMENTACIÓN AERÓBICA	Verificar que realice los cálculos asignados.	- Tener Permisos de lectura <u>a la BD</u> . -Seleccionar cantidad de materia prima	ок	OK	Concluido
CP004	SECADO ARTIFICIAL	Verificar que realice los cálculos asignados.	- Seleccionar Fermentación.	OK	OK	Concluido
CP005	REPORTE GENERAL	Verificar que se consulten los resultados de los diferentes procesos.	-Tener Permisos de lectura a la BD.	ок	ОК	Concluido

Fuente: Java

Una vez que las pruebas han sido realizadas, aceptadas y validadas por el usuario, se procederá con la etapa de implementación del sistema.

4.5.3.2 Fase de implementación

- Instalación del sistema. el sistema inicialmente se instalará en una máquina principal, el cual será manejado por el administrador encargado de los procesos de producción de cacao.
- Capacitación. se capacitará al usuario responsable que va a interactuar con el sistema, por un periodo de 2 días.
- Manual de usuario. la entrega de este manual tendrá como propósito brindar asistencia sobre la funcionalidad del sistema al usuario administrador. La entrega se realizará de forma impresa y en formato digital.

Una vez que la fase de implementación se ha realizado con éxito, se procederá a la entrega del sistema mediante un acta final.

4.6 Cronograma

El sistema de información que simula los procesos de producción de cacao orgánico de exportación, fue desarrollado en tres fases con una duración de 108 días. Ver Anexo # 3 "Project: cronograma de las actividades".

A continuación, se nombran las fases en la que se dividió el desarrollo del sistema.

- Levantamiento de información del proceso de post cosecha con una duración de 15 días.
- Investigación del problema con una duración de 30 días.
- Desarrollo del aplicativo con una duración de 70 días.

• Finalización con una duración de 3 días.

4.7 Impacto de la propuesta

A continuación, se han determinado los indicadores para verificar el progreso hacia el logro del objetivo del sistema, el cual consiste en predecir el comportamiento de los procesos bajo diversas situaciones para analizar posibles alternativas de optimización.

CUADRO N° 17
IMPACTO DE LA PROPUESTA

INDICADORES	FORMULA	FRECUENCIA	IMPACTO
Medidor de humedad	Porcentaje Humedad= ((Humedad Inicial – Humedad Final)/Humedad Inicial) * 100	Cada 2 días	Positivo al controlar el porcentaje de humedad luego del secado artificial.
Medidor de agua	Porcentaje de agua =Cantidad Cacao Nacional Fermentado x %H2O + Perdidas de cacao en libras	Cada 2 días	Positivo al controlar la deshidratació n del cacao en la fermentación
Medidor Acidez	Acidez = ((Gasto Bureta)(Normalidad)(Peq u.m.a))/Alícuota de titulante.	Cada 4 días	Positivo al controlar el nivel de acidez del cacao.

Fuente: Java

El impacto contiene los medidores principales de los procesos de fermentación y secado, los cuales ayudan a que estas etapas tengan un buen desempeño con respecto a los grados de humedad y acidez del cacao. Además, estos indicadores permitirán monitorear constantemente el cumplimiento de los estándares de calidad del producto.

4.8 Conclusiones

Luego de haber estudiado el proceso de fermentación aeróbica y secado artificial de la post cosecha de cacao, se puede concluir lo siguiente:

- 1. Al utilizar la tecnología en la parametrización de los elementos químicos, se concluye que el sistema puede servir como base para crear nuevas versiones en las diferentes áreas de la agricultura, a fin de poder monitorear el comportamiento de los procesos en productos tales como: café, arroz, cebada, entre otros.
- Mediante la simulación se puede realizar cálculos y pruebas de forma virtual y no física, esto genera un ahorro en la materia prima, aminorando su desperdicio, y al mismo tiempo minimizando el impacto ambiental.
- 3. El sistema utiliza formulas químicas basadas en flujos de entrada y salida, aplicando conocimientos informáticos y químicos.
- 4. Con la implementación del sistema se incrementará el valor de cacao en 50 dólares por quintal, ya que, al alcanzar los valores deseados de acidez y humedad, estos quintales no serán regresados.
- El sistema contendrá un módulo reporteador, el cual mediante todos los reportes que ofrece, proporciona información de manera segura, integra y eficiente para una mejor toma de decisiones.

4.9 Recomendaciones

Para el correcto funcionamiento del sistema de información que simula los procesos de producción de cacao, se deben tomar en cuenta las siguientes recomendaciones:

- 1. Se recomienda el mejoramiento de la parametrización del sistema, con la finalidad de poder ser adaptado a otras áreas agrícolas.
- Se recomienda instruir al personal que labora en la planta para un mejor desempeño del sistema.
- Se recomienda que el administrador principal del sistema, cumpla con políticas de seguridad basándose en objetivos básicos, tales como: integridad, confidencialidad y disponibilidad de los datos.
- 4. Se recomienda por seguridad, realizar respaldos diarios de la información del sistema, con la finalidad de salvaguardar la información en caso de algún incidente.
- 5. Se recomienda actualizar periódicamente la plataforma tecnológica sobre la cual opera el sistema, con la finalidad de aprovechar las características técnicas que las nuevas versiones de software ofrecen, lo cual mejorará notoriamente el desempeño del sistema.

ANEXOS

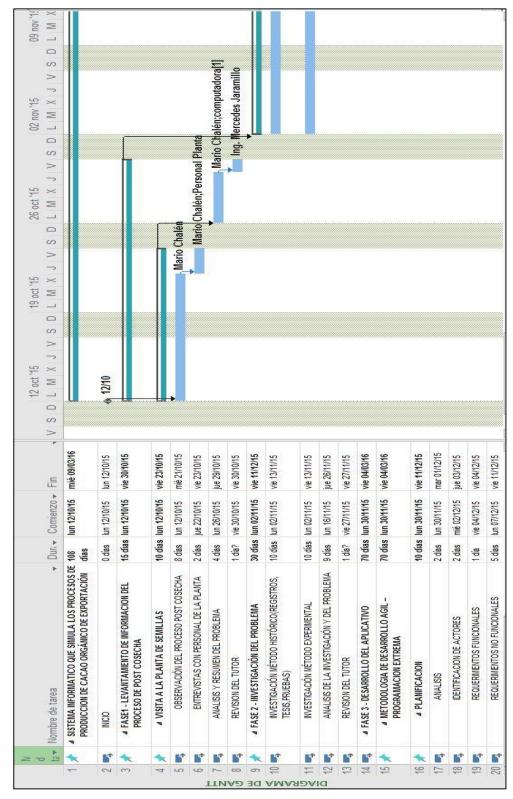
ANEXO N° 1

ENTREVISTA DIRIGIDA A LA POBLACIÓN QUE INTERVIENE EN LOS PROCESOS DE POST COSECHA DE LA PLANTA PROCESADORA DE SEMILLAS APOVINCES

Nombre	del		encue	
Entrevista : dirigio de post cosecha d	-			
Objetivo: Conocer el tipo de cacao que asociaciones que con	ingresa a la p	lanta, el trata		
	Perfil del	encuestado		
	Sexo Manejo interi	Hombre	Mujer a	
1. ¿Cuánto cacao se	produce al año)?		
2. ¿Qué factores ex productividad del c		olima, sequias	i, plagas incid	den en la

3. ¿Hacia qué mercado van dirigidos los lotes de cacao: nacional o internacional?

4.	¿Cuál es el procedimiento en el proceso de post cosecha de cacao?
5.	¿En que afecta la calidad del cacao si el tiempo de fermentación no es el suficiente?
6.	¿Cuál es el grado óptimo de humedad en el secado para el cacao?
7.	¿En el proceso de producción de cacao, todavía se utilizan herramientas netamente manuales?


ANEXO N° 2 ENCUESTA DIRIGIDA A LA POBLACIÓN QUE INTERVIENE EN LOS PROCESOS DE POST COSECHA DE LA PLANTA PROCESADORA DE SEMILLAS APOVINCES

		DE GENNEEA		
Nombre 		del		encuestado:
		cosecha de la		nterviene en los esadora de semillas
cacao e	n la planta ad de la au	procesadora	de semillas en dichos prod	os de producción de Apovinces y ver la cesos, a través de la
		Perfil del	encuestado	
	Sexo	Hombre Manejo interi	Muje	
1) ¿A cu	ál de los sigui	entes mercados	va dirigido el cac	ao una vez procesado?
	Regional	□ N	acional	Internacional

	Loc	cal 🔲		
2)		in considera ivo del caca		ectivos de la planta introducirse en el negocio de
		Sí		No
3)		-		ntran de acuerdo con el porcentaje de producción el proceso de fermentación y secado?
		Sí		No
4)	¿Es	alta la pérdi	da de los lo	tes de cacao al exportar los mismos?
		Sí		No
5)	des			ismos para darles un tratamiento técnico a los e cacao durante el proceso de la fermentación y
		Sí		No
6)		el proceso ener una hu		entación se pierden muchas libras de cacao para ma?
		Sí		No
7)	ele	mentos quíi	micos que	asesoramiento técnico sobre la cantidad de debe utilizarse en una determinada cantidad de fermentación y secado?
		Sí		No
				Automatización
8)				ocesadora de semillas cuenta con maquinarias que empo en los procesos de la post cosecha?
		Sí		No

9)					eniente la a ocesos de in	-				nación
		Sí			No					
	Μι	ıchas	grac	ias por	su amab	ilidad y	por el	tiempo	dedica	do
				a c	ontestar	esta en	cuesta			

ANEXO N° 3
DIAGRAMA DE GANTT DEL SISTEMA

	d tr ▼ Nombre de tarea	• Dur	 ◆ Dur → Comienz → Fin 	Fin	TS 21 dic TS 28 dic TS 04 ene T6	Theme 76	
10	⊿ DISEÑO	20 día	20 días' lun 14/12/15	vie 08/01/16	00000000		
F	DIAGRAMAS (CASO DE USO Y CLASES)	2 días	2 días lun 14/12/15	mar 15/12/15	Mario Chalén;computadora[1]		
I.	DISEÑOS DE PANTALLAS	12 dias	12 días mié 16/12/15	jue 31/12/15	Mario Chalén;compu	Mario Chalén; computadora[1]; Software de programación[1]	[J]woj:
1	MODELO DE DATOS	5 días	5 días vie 01/01/16	jue 07/01/16		Mario Chalén;computadora[1]; Softw]; Softw
25	MODELO ENTIDAD RELACION	1 día?	vie 08/01/16	vie 08/01/16		Mario Chalén;computadora[1];Sc	.a[1];Sc
26 🖈	△ DESARROLLO	25 día	25 días lun 11/01/16	vie 12/02/16		0000	
27	CODIFICACION	25 dias	25 dias lun 11/01/16	vie 12/02/16			
28	BASE DE DATOS	25 días	25 días lun 11/01/16	vie 12/02/16			
29 🖈	■ PRUEBAS	15 día	15 días lun 15/02/16	vie 04/03/16			
F.	PRUEBA FUNCIONAL	4 días	4 días lun 15/02/16	jue 18/02/16			
31	PRUEBA DE INTEGRACION	6 días	6 días vie 19/02/16	vie 26/02/16			
32	PRUEBA DEL SISTEMA	4 días	4 días lun 29/02/16	jue 03/03/16			
33	IMPLEMENTACION	1 dia	vie 04/03/16	vie 04/03/16			
*	△ FASE 4 - FINALIZACION	2 días	2 días lun 07/03/16	mar 08/03/16			
35	ELABORACION DE LA DOCUMENTACION DEL PROYECTO	1 dia	1 día lun 07/03/16 lun 07/03/16	lun 07/03/16			
36	ANALISIS Y ELABORACION DE RESULTADOS Y CONCLUSIONES	1 día?	lun 07/03/16	lun 07/03/16			
B*	FIRMA DEL ACTA DE LA ENTREGA DEL SISTEMA	1 día?	1 día? mar 08/03/16	mar 08/03/16			
10	REVISION DEL TUTOR	1 día?	mar 08/03/16	mar 08/03/16			
39	FIN	0 días	mar 08/03/16	mar 08/03/16			

BIBLIOGRAFÍA

- Alvarez, M. A. (2001). Que es Java.
- Arbuto Gutierrez, M. (2014). Desarrollo de aplicaciones en java.
- **Barel, M. (1987).** Délai d' écabossage. Influence sur les rendements et la qualité du cacao marchand et du cacao torréfié.
- **Bonilla Rodríguez, J. G. (2010).** Diseño y análisis de un sistema de instrumentación y automatización industrial aplicado al proceso de pasteurización de una planta de elaboración de cerveza. Guayaquil.
- **Braudeau J. (1970).** Técnicas agrícolas y producciones tropicales . Barcelona: Blume.
- **Bravo Ramirez, D. (2010).** Universidad Nacional de San Martín. Obtenido de://tesis.unsm.edu.pe/jspui/bitstream/11458/366/1/Diana%20Carol ina%20Bravo%20Ram%C3%ADrez.pdf.
- **Bu, R. C. (1998).** Simulación: un enfoque práctico. En R. C. Bu. Limusa, 1996.
- Concha, Á., Umaña, L., & Vargas, M. J. (2011). El Seguro de transporte de carga. Recuperado el Septiembre de 2015, de http://www.fasecolda.com/files/6513/8878/2859/02-el_seguro_de_transporte_de_carga.pdf

- Contreras C. L. Ortiz de Bertorelli L. Graziani de Fariña y P. Parra. (2004). Fermentadores para cacao usados por los productores de la localidad de Cumboto. Venezuela: Agronomía Trop.
- Contreras, C., Ortiz de Bertorelli, L., Fariña, G., & Parra, P. (2004).

 Fermentadores para cacao usados por los productores de la localidad de Cumboto. Venezuela: Agronomía Trop.
- Costa, R. (2015). Contenedores al agua. Recuperado el Julio de 2015, de Siiot web de ecoavant: http://www.ecoavant.com/es/notices/2015/05/-contenedores-al-agua-2347.php
- **Cros E. and N. Jeanjean. (1995).** Cocoa quality: effect of fermentation and drying plantations. Reserch, Developpement.
- **Cros, E., & Jean, J. (1995).** Cocoa quality: effect of fermentation and drying plantations. Reserch, Developpement.
- **Dias J. y M. Avila. (1993).** Influência do período de póscolheita do fruto, sistema de revolvimento da massa e tempo de fermentação sobre a acidez do cacau.
- Garre, I. (2010). El seguro de transportes: origen y actualidad. Recuperado el 09 de 2015, de Sitio wed de interprensa: http://www.interempresas.net/Transporte/Articulos/42326-El-seguro-de-transportes-origen-y-actualidad.html
- Gonzáles, G., & Painii, V. (2010). El Exudado del grano de cacao (Theobroma cacao L) como Herbicida para el manejo de las malezas. Investigación Tecnología e Innovación, 94-105.

- **Guillermo**, **A. C. (2015).** Universidad de Cauca. Obtenido de http://fccea.unicauca.edu.co/old/siconceptosbasicos.htm
- Iniap. (2013). Instituto Nacional Autónomo de Investigaciones Agropecuarias. Recuperado el 25 de Abril de 2015, de http://www.iniap.gob.ec/nsite/index.php?option=com_content&view =article&id=795:iniap-da-recomendaciones-sobre-como-obteneruna-buena-calidad-del-cacao-fino-de-aroma&catid=97&Itemid=208
- Iniap. (2013). Instituto Nacional Autónomo de Investigaciones Agropecuarias. Recuperado el 25 de Abril de 2015, de http://www.iniap.gob.ec/nsite/index.php?option=com_content&view =article&id=795:iniap-da-recomendaciones-sobre-como-obteneruna-buena-calidad-del-cacao-fino-de-aroma&catid=97&Itemid=208
- **Leal, G. d. (2003).** Fermentación del cacao en dos diseños de cajas de madera. Venezuela: Agronomía Trop.
- Lemus M. Graziani de Fariñas L. Ortiz de Bertorelli y Trujillo de Leal. (2002). Efecto de mezclado de cacaos tipos criollos y forastero de la localidad de Cumboto sobre algunas características físicas durante la fermentación. Venezuela: Agronomía Trop.
- **Loayza Lozano, W. (2014).** Google Academico. Obtenido de https://scholar.google.com.ec/scholar?cluster=20174292628447313 88&hl=es&as_sdt=0,5&as_ylo=2012
- Medrán, R. (2012). Manual práctico de comercio Exterior. Recuperado el Octubre de 2015, de http://www.difusionjuridica.com.bo/bdi/biblioteca/biblioteca/libro193/lib193-4a.pdf

- Netbeans. (2015). netbeans. Obtenido de https://netbeans.org
- **Nogales et al. (2006).** Cambios físicos y químicos durante el secado al sol del grano de cacao fermentado en dos diseños de cajones de madera. Venezuela: Agronomía Trop.
- Nogales, J., de Fariñas, L. G., & de Bertorelli, L. O. (2006). Cambios físicos y químicos durante el secado al sol del grano de cacao fermentado en dos diseños de cajones de madera. Venezuela: Agronomía Trop.
- Nogales, J., Fariñas, L. G., & De Bortelli, L. O. (2006). Cambios físicos y químicos durante el secado al sol del grano de cacao fermentado en dos diseños de cajones de madera. Venezuela: Agronomía Trop.
- Omi. (2014). Sitio Web de la Organización Maritima Internaciona.
 Recuperado el Septiembre de 2015, de https://gisis.imo.org/Public/MCI/Search.aspx?Mode=Advanced
- Onu. (2012). Programa 21 Organización de la Naciones Unidas. Recuperado el 2015, de Protección de los océanos y de los mares de todo tipo, incluidos los mares cerrados y semicerrados, y de las zonas costeras, y protección, utilización racional y desarrollo de sus recursos vivos: http://www.un.org/spanish/esa/sustdev/agenda21/agenda21spchap ter17.htm
- Oracle Corporation. (2015). MySql. Recuperado el 27 de Mayo de 2015, de https://www.mysql.com/
- **Oracle Corporation. (2015).** Netneans. Recuperado el 27 de Mayo de 2015, de https://netbeans.org/community/releases/72/

- Ovalle Pinilla, D. (2014). Universidad del Rosario. Obtenido de http://repository.urosario.edu.co/handle/10336/8920
- **Ovalle, B. (1990).** Simulación de procesos industriales en una planta de cafe soluble. Guayaquil.
- Paz, R. (19 de Julio de 2012). Club Ensayos. Obtenido de https://www.clubensayos.com/Ciencia/Mucilago-Del-Cacao/236210.html
- Pineda, S. (2013). Una maravillosa travesía que no llega a su fin. Recuperado el 2015, de Sitio Wed Mundo Directo: http://hilodirecto.com.mx/alucinante-travesia-los-patitos-de-hule/
- **Puziah et al. (1998).** Effect of mass and turning time on free amino acid, peptide-N, sugar and pyrazine concentration during cocoa fermentation. Food Agric.
- Santillán, L. A., Ginestà, M. G., & Mora, Ó. P. (2015). Bases de Datos en MySql. Obtenido de www.uoc.edu: www.uoc.edu
- Schwan R. A. Lopez D. Silva y M. Vanetti. (1990). Influência da freqüencia e intervalos de revolvimentos sobre a fermentação do cacau e qualidade do chocolate. Agrotropica.
- **Senanayake et al. (1997).** Effect of different mixing intervals on the fermentation of cocoa beans. Food Agric.
- **Sierra, M. (2015).** Aprender a Programar. Obtenido de www.aprenderaprogramar.com
- Torres O. L. Graziani de Fariñas L- Ortiz de Bertorelli y A. Trujillo. (2004). . Efecto del tiempo transcurrido entre la cosecha y el

- desgrane de la mazorca del cacao tipo forastero de Cuyagua sobre características del grano en fermentación. Agronomía Trop.
- Universidad de Oriente Press. (2009). Diagnóstico Agrosocioeconómico del Sector cacao (Theobroma cacao L.) en Yaguaraparo, Municipio Cajigal, estado Sucre, Venezuela. Revista Científica UDO Agrícola, 425-435.
- Wells, D. (2013). Extreme Programming. Recuperado el 14 de Mayo de 2015, de http://www.extremeprogramming.org/
- Whitten, K. W. (1992). Química general. México: Mcgraw-hill Interamericana de México.
- Winston, W. (1994). Investigación de operaciones. Iberoamericana.