

UNIVERSIDAD DE GUAYAQUIL

FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS ESCUELA DE INGENERÍA CIVIL

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERIO CIVIL

VÍAS

TEMA:

DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADUM DESDE LA AV. COLÓN HASTA LA AV. JAIME ROLDÓS AGUILERA, EN EL CANTÓN MILAGRO, PROVINCIA DEL GUAYAS.

AUTORES:

ESTEFANIA SORANGE TORRES CASTILLO
GALO ROBERTO MAITA VIVANCO

TUTOR

ING. GREGORIO BANCHON ZUÑIGA.

2016

GUAYAQUIL - ECUADOR

AGRADECIMIENTO

Son tantas personas a las cuales debo parte de este triunfo, de lograr alcanzar mi culminación académica.

Definitivamente Dios, mi Señor mi guía, mi proveedor, sabes lo esencial que has sido en mi posición firme de alcanzar esta meta, esta alegría. A mis padres, ustedes siempre serán mi inspiración para alcanzar mis metas, por enseñarme que todo se aprende y que todo esfuerzo es al final recompensa.

Y porque no agradecer a mis maestros, en especial al Ing. Gregorio Banchon que ha sido mi asesor de esta tesina y gestor de este proceso de enseñanza, aprendizaje teórico y práctico en nuestra institución.

DEDICATORIA

Por sus almas nobles llenas de fe en mí, que sembraron en mi corazón aquel poder inseparable de optimismo y esperanza dedico esta tesina a mis queridos padres, ya que con su conocimiento, experiencia y apoyo incondicional contribuyeron para la culminación de este trabajo sin olvidar a mi querido Dios y demás familia que en los momentos difíciles me han apoyo y he podido salir adelante.

Ustedes han estado a mi lado en todo momento dándome las fuerzas necesarias para continuar luchando día tras día y seguir adelante rompiendo todas las barreras que se me presenten, para todos ustedes esta dedicatoria que he realizado con mucho esfuerzo y empeño.

AGRADECIMIENTO

Al finalizar el presente trabajo agradezco a la Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, escuela de Ingeniería Civil, que me acogió para formarme como profesional y servir a la sociedad.

Al Ing. Gregorio Banchón quien con su dedicación y paciencia ha sabido guiarme y asesorarme en el desarrollo y culminación de la presente investigación.

A los docentes que me brindaron sus conocimientos y experiencias que han sido herramientas fundamentales para desarrollarme profesionalmente.

DEDICATORIA

A Dios, a mi mami gracias por todo el amor comprensión y apoyo que me ha dado durante todo este tiempo, a mi papi que ha sido mi inspiración para lograr mi sueño y promesa, a mis hijos que son mi motivación para salir adelante, mi esposa y hermanos y cada uno de los que fueron parte en mi formación académica que Dios los bendiga.

TRIBUNAL DE GRADUACIÓN

Ing. Eduardo Santos Baquerizo, M. Sc.	Ing. Gregorio Banchon Zuñiga
DECANO	TUTOR
	
Ing. Carlos Mora Cabrera M. Sc.	Ing. Julio Vargas Jiménez M. Sc.
TRIBUNAL	TRIBUNAL

DECLARACIÓN EXPRESA

ART.- XI del Reglamento interno de Graduación de la facultad Ciencias Matemáticas y Físicas de la Universidad de Guayaquil.

La responsabilidad por los hechos, ideas y doctrinas expuestas en este trabajo de Titulación corresponde exclusivamente a los autores, y el patrimonio intelectual de la Universidad de Guayaquil.

Estefania Sorange Torres Castillo

Ci: 0921939423-7

Galo Roberto Maita Vivanco

Ci: 1104381312

ÍNDICE GENERAL

CAPÍTULO I

ASPECTOS GENERALES

1.1.	Intr	oducción	1
1.2.	Ant	ecedentes2	2
1.3.	Ter	na de investigación	2
1.4.	Pla	nteamiento del problema	3
1.4.	1.	Formulación del problema.	3
1.5.	Del	imitación del tema	4
1.5	1.	Delimitación espacial	4
1.5	2.	Delimitación temporal	4
1.5	.3.	Delimitación del contenido	4
1.6.	Jus	tificación del tema	4
1.7.	Met	todología	5
1.8.	Alca	ance6	3
1.9.	Obj	etivos6	3
1.9	1.	Objetivo general.	3
1.9	.2.	Objetivos específicos.	7
1.10.	U	bicación	7

CAPÍTULO II

MARCO TEÓRICO

2.1	. Ca	amino	9
2.2	. Pa	avimento10)
2	2.2.1.	Clasificación de los pavimentos)
2.3	. Pa	avimentos flexibles11	1
2	2.3.1.	Elementos que conforman un pavimento flexible1	1
2	2.3.2.	Variables para el diseño de pavimento flexible 14	1
	2.3	2.1.Periodo de diseño14	4
	2.3	2.2.Tránsito14	4
	2.3	2.3.Confiabilidad14	4
	2.3	2.4.Serviciabilidad14	4
	2.3	2.5.Drenaje15	5
	2.3	2.6.Propiedades de los materiales15	5
	2.3	2.7.Numero estructural (SN)15	5
	2.3.	2.8.Módulo resiliente de la sub-rasante, Mr15	5
2.4	. Tra	áfico16	3
2	2.4.1.	Trafico promedio diario anual16	3
	2.4.	1.1.Tipos de conteo	7
	2.4.	1.2.Variaciones17	7
2	2.4.2.	Tráfico futuro	3

2.5. V	'elocidad	18
2.6. E	studios de suelos	18
2.6.1.	Contenido de humedad	19
2.6.2.	Límites de Atterberg o límites de consistencia	19
2.6	S.2.1.Limite líquido	19
2.6	S.2.2.Limite plástico	19
2.6	S.2.3.Límite de contracción	19
2.6.3.	Índice Plástico	20
2.6.4.	Granulometría	20
2.6	6.4.1.Sistema de clasificación de los suelos	20
2.6.5.	Ensayo de compactación	22
2.6.6.	California bearing ratio (CBR)	22
2.6.7.	Topografía y características físicas del relieve	23

CAPÍTULO III

TRÁFICO

3.1.	Det	terminación de la demanda vehicular actual	25
3.1	.1.	Conteo de Tráfico.	25
3.1	.2.	Trafico promedio diario semanal	27
3.1	.3.	Variaciones de tráfico.	28
3.1	.4.	Trafico promedio diario anual	30
3.2.	Det	terminación de la demanda proyectada	30
3.2	.1.	Tráfico futuro	30
	3.2.	.1.1.Transito generado	30
	3.2.	.1.2.Transito desarrollado	31
3.2	.2.	Tránsito asignado	31
3.2	.3.	Proyección del tráfico a 15 años (Tf)	32
3.3.	Cal	culo de ESAL's	34
3.4.	Est	udios de suelos	40
3.4	.1.	Resultados Obtenidos.	40

CAPITULO IV

DISEÑO DE PAVIMENTO FLEXIBLE POR EL MÉTODO AASHTO 93

4.1.	Var	iables para el diseño de pavimento	41
4.1.	1.	Esal`s (W18)	41
4.1.	2.	Confiabilidad (R).	42
4.1.	3.	Desviación estándar (So)	43
4.1.	4.	Numero estructural (SN)	44
4.1.	5.	Serviciabilidad	45
4.1.	6.	Módulo resiliente.	45
4.2.	Esp	pesores de las capas del pavimento	46
		CAPITULO V	
		FACTORES GEOMÉTRICOS DEL DISEÑO VIAL	
5.1.	Vel	ocidad de diseño	. 48
5.2.	Vel	ocidad de circulación	48
5.3.	Dis	tancias de visibilidad	50
5.3.	1.	Distancia de visibilidad de parada de un vehículo	50
5.3.	2.	Distancia de visibilidad para el rebasamiento de un vehículo	53
5.4.	Sec	cción Típica	. 56
5.4.	1.	Elementos de la sección de la vía	. 56

5	5.4.1.1.Calzada 5	6
5	5.4.1.2.Cunetas5	7
5.4.	2. Curvas horizontales5	7
5	5.4.2.1.Curvas circulares simples5	8
5	5.4.2.2.Tangentes5	8
5.5.	Diseño de curvas horizontales5	9
	CAPITULO VI	
	CAPITULO VI CONCLUSIONES Y RECOMENDACIONES	
6.1.		0
6.1. 6.2.	CONCLUSIONES Y RECOMENDACIONES	
•	CONCLUSIONES Y RECOMENDACIONES Conclusiones 6	
•	CONCLUSIONES Y RECOMENDACIONES Conclusiones 6 Recomendaciones 6	

INDÍCE DE FIGURAS

Figura 1. Ubicación de la via en estudio	8
Figura 2. Punto de control para el conteo de tráfico	25
Figura 3. Formato para el conteo de tráfico	26
Figura 4. Calculo del porcentaje de tráfico diario semanal	27
Figura 5. Calculo del tráfico futuro	33
Figura 6. Calculo de factor de equivalencia de carga LEF	35
Figura 7. Factor de crecimiento	38
Figura 8.Resumen de estudios de suelos en la subrasante	40
Figura 9. Estructura del pavimento flexible	47
Figura 10. Distancia de visibilidad de parada	50
INDÍCE DE TABLAS	
Tabla 1. Coordenadas geográficas de la vía en estudio	8
Tabla 2.Factor de ajuste mensual	29
Tabla 3. Calculo del factor diario	29
Tabla 4 Composición del trafico promedio diario semanal. (TPDS)	32
Tabla 5.Composición del tráfico asignado. (Tasig.)	32
Tabla 6. Tasa de crecimiento según el tipo de vehículos	33
Tabla 7. Normas de diseño geométrico 2002	34
Tabla 8. Calculo de factor camión por vehículo	37
Tabla 8. Calculo de factor camión por vehículo Tabla 9. Porcentaje de crecimiento	

Tabla 11. Guide for designe of pavement structures 1993	39
Tabla 12. Niveles de confianza.	42
Tabla 13. Desviación normal estándar del nivel de confiabilidad	43
Tabla 14. Desviación standard (So)	43
Tabla 15. Coeficientes de capa	44
Tabla 16. Coeficiente de drenaje	45
Tabla 17. Módulos resilientes de materiales	46
Tabla 18. Número estructural de las capas de la estructura de pavimento	46
Tabla 19. Espesores de las capas de la estructura de pavimento	47
Tabla 20. Velocidades de diseño	48
Tabla 21. Velocidades de circulación	49
Tabla 22. Distancia de visibilidad mínima para parada de un vehículo	53
Tabla 23. Distancia mínima de visibilidad.	55
Tabla 24. Especificaciones vigentes del MTOP.	56
Tabla 25. Curvas calculadas	59

CAPÍTULO I

ASPECTOS GENERALES

1.1. Introducción

El ser humano desde su existencia se vio en la necesidad de comunicarse de una manera rápida y segura, a sus inicios fue construyendo caminos a base de piedras y aglomerantes, en la actualidad se han perfeccionado las técnicas de construcción, dando como resultado calles, vías, de pavimento flexible y rígido.

Con el aumento del parque automotor en estos últimos años, la circulación en las calles y vías (urbanas, rurales), se ha tornado más compleja, por este motivo es de gran importancia la elaboración de análisis operacionales de sistemas viales.

El presente trabajo, el cual se refiere al diseño de pavimento flexible, describirá sus características para poder cumplir con los requisitos del Ministerio de Transporte y Obras Públicas.

En la ciudad de Milagro provincia del Guayas, la situación actual de la Av. Alfredo Adúm, produce incomodidad para los moradores, contaminación en el medio ambiente, pérdida de tiempo en su recorrido.

Para el efecto es fundamental realizar el estudio de tráfico, que determina las características constructivas de la vía, para el diseño constructivo nos guiaremos en el método ASHTO-93, especificaciones y normas técnicas necesarias para poder cumplir con los requisitos del MTOP, y se describirán las características del suelo.

1.2. Antecedentes

El proyecto se encuentra ubicado en el Cantón Milagro, Provincia del Guayas, con una longitud de 1.14 Km, siendo una vía colectora que une a dos vías principales, el estado actual de la avenida Alfredo Adúm está a nivel de material de mejoramiento, lo que regularmente provoca que en épocas de lluvia se formen charcos de agua, que tornan a la vía intransitable, tanto para los vehículos y peatones, y en época de verano se forme una capa de polvo que afecta a los habitantes del sector y también a la vegetación.

Dado los efectos producidos en épocas de invierno y verano, la movilidad, seguridad y comodidad de los que usan la avenida Alfredo Adúm, se ven afectados; el presente trabajo contribuye una alternativa de solución a los inconvenientes anteriormente descritos.

1.3. Tema de investigación

"Diseño de pavimento flexible utilizando el método Aashto 93, en la Av. Alfredo Adúm desde la Av. Colón hasta la Av. Jaime Roldós Aguilera del Cantón Milagro, Provincia del Guayas."

1.4. Planteamiento del problema

Nuestro país se encuentra en vías de desarrollo por lo cual es de vital importancia contar con una red vial con infraestructura adecuada, funcional y estratégica que brinde confort y seguridad a los usuarios. Existe actualmente una gran extensión de vías pavimentadas que requieren mantenimiento, de igual manera hay sectores vulnerables que no tienen sus calles o carreteras asfaltadas.

Las calles de la zona urbana del Cantón Milagro a pesar de ser muy transitadas, presentan déficit en la calidad de la carpeta de rodadura causando malestar tanto en conductores, habitantes y peatones que circulan por estas avenidas. Las calles se encuentran deterioradas debido a los años de servicios y al tráfico reiterado, presentando envejecimiento prematuro y fallas en la capa de rodadura (piel de cocodrilo, ahuellamiento, fisuras transversales y longitudinales entre otros).

1.4.1. Formulación del problema.

La Avenida Alfredo Adúm del Cantón Milagro actualmente está a nivel de material de mejoramiento, esta vía en épocas de lluvia ocasiona problemas por las formaciones de charcos de agua que hace que se torne intransitable para los vehículos. En época de verano provoca malestar a los habitantes debido al polvo que genera el tránsito con la consecuente, contaminación del medio ambiente.

En tal razón y según las síntesis anteriormente mencionadas podemos expresar que el problema central de esta avenida se fundamenta en la siguiente interrogante.

¿La elaboración de un diseño de pavimento flexible según el método AASHTO 93, en la Av. Alfredo Adúm desde la Av. Colón hasta la Av. Jaime Roldós Aguilera del Cantón Milagro Provincia del Guayas, ayudará a la vialidad del sector y mejorará la calidad de vida para sus habitantes?

1.5. Delimitación del tema

1.5.1. Delimitación espacial.

Esta investigación de teoría y práctica se ejecutará en el Cantón Milagro en la avenida Alfredo Adúm, con una extensión aproximada de 1.14 km. Las coordenadas de inicio son 9763502 N, 657377 E; y las coordenadas del fin de la vía 9762446 N, 657782 E, en el sistema de referencia WGS84.

1.5.2. Delimitación temporal.

El presente proyecto de investigación se realizara en el periodo comprendido de mayo a septiembre del 2016.

1.5.3. Delimitación del contenido.

El objeto de esta investigación se ubica dentro del diseño de pavimento flexible.

1.6. Justificación del tema

Tomando en cuenta uno de los objetivos de la Universidad Estatal de Guayaquil es vincular la formación pre profesional con la sociedad en la búsqueda de integrar la teoría con la práctica y de esta manera brindar un apoyo mutuo. La carrera de Ingeniería Civil tiene como propósito formar profesionales de carácter competitivo

con el propósito de resolver problemas sociales políticos y económicos de la sociedad, es por ello que hemos creído conveniente realizar un diseño de pavimento flexible con el método AASHTO 93, en la Av. Alfredo Adúm desde la Av. Colón hasta la Av. Jaime Roldós Aguilera del Cantón Milagro, Provincia del Guayas.

Este trabajo permitirá contar con una herramienta de construcción vial que mejorará las condiciones de vida de sus habitantes.

La metodología programada en esta investigación del diseño de pavimento flexible, se llevara a cabo mediante obtención de toma de muestra en situ, para realizar los ensayos adecuados en el laboratorio, trabajos de topografía, trafico promedio diario anual (TPDA) y diseño de pavimento flexible.

1.7. Metodología

La sistemática a utilizar en el presente trabajo de investigación se clasifica de la siguiente forma:

Investigación de campo:

En la investigación de campo se realizará aforo de vehículos TPDA, se obtendrán muestras de suelos en situ.

• Análisis e interpretación de resultados:

En esta etapa una vez adquirida la información de campo, se procederá a obtener resultados para su respectivo diseño.

La metodología a usar consiste en la realización de tomas de muestras necesarias, en nuestro caso se procedió a realizar 2 calicatas, las cuales nos permitieron realizar los ensayos en laboratorio como fueron: humedad, granulometría, límites líquido, límites plásticos, proctor modificado, CBR, para el cálculo de dichos ensayos utilizamos formatos aplicando formulas por medio de hoja de cálculo, una vez obtenido el ensayo de CBR de diseño, continuamos con el cálculo de esal's que lo obtuvimos mediante el conteo de tráfico manual para obtener el TPDA, procedemos a la aplicación del método AASTHO 93 que define el espesor de cada capa para nuestro diseño.

1.8. Alcance

La presente investigación tiene como propósito realizar el diseño de pavimento flexible utilizando el método AASTHO 93, para mejorar las condiciones en la avenida Alfredo Adúm, para ello debemos realizar estudios de los materiales existentes para el diseño y construcción de la vía, partiendo de la sub-rasante la que va a permitir realizar el diseño de pavimento flexible.

1.9. Objetivos

1.9.1. Objetivo general.

Diseñar un pavimento flexible para garantizar la vialidad y eficiencia de la estructura del pavimento que garantice comodidad y seguridad a los vehículos que circularán en la Av. Alfredo Adúm desde la Av. Colon hasta la Av. Jaime Roldos Aguilera del Cantón Milagro, Provincia del Guayas.

1.9.2. Objetivos específicos.

- Conocer la demanda actual y futura del tráfico para determinar mediante los ejes equivalente o esal's, las características estructurales del pavimento flexible.
- Determinar la capacidad de soporte del terreno donde se implantara la vía mediante ensayos y análisis de la geotecnia, a fin de obtener los parámetros de diseño referido al material de la sub-rasante.
- Determinar la estructura del pavimento flexible, por medio del método
 AASTHO 93.

1.10. Ubicación

La vía en estudio se sitúa en el área urbana del Cantón Milagro, Provincia del Guayas, se inicia desde la avenida colon con un recorrido de 1.14 Km, hasta llegar a la avenida Jaime Roldós Aguilera.

El Cantón Milagro pertenece a la provincia del Guayas y se encuentra ubicado a 46 km de Guayaquil, sus límites: por: Norte con los cantones Yaguachi, A Baquerizo Moreno y Simón Bolívar, al Sur con los Cantones Yaguachi y Naranjito, al Este con los Cantones Simón Bolívar y Naranjito, y al Oeste con Yaguachi.

Tabla 1. Coordenadas geográficas de la vía en estudio.

PUNTO 1 (Av. Alfredo Adúm y Av.	Norte:	9'763.502
Colón)	Este:	657.377
PUNTO 2 (Av. Alfredo Adúm y Av. Jaime	Norte:	9'762.446
Roldos)	Este:	657.782

Fuente. Torres Estefanía, Maita Galo

Figura 1. Ubicación de la vía en estudio

Fuente: Google Earth

CAPÍTULO II

MARCO TEÓRICO

2.1. Camino

Se entiende por camino, carretera o calle, aquella faja de terreno acondicionada para el tránsito de vehículos, la denominación de camino incluye a nivel rural las llamadas carreteras, ya nivel urbano las calles de la ciudad. (Rafael Cal y Mayor Reyes Spíndola, 1994, pág. 98).

Autopistas y vías rápidas: Son las que facilitan el movimiento expedito de grandes volúmenes de tránsito entre áreas, a través o alrededor de la ciudad o de área urbana. (Tipos de vías y elementos de sección transversal; Universidad de Oriente) (Rafael Cal y Mayor Reyes Spíndola, 1994, pág. 105).

Calles Principales (arteriales).- Son las que permiten el movimiento del tránsito entre áreas o partes de la ciudad, dirigiendo el tránsito a los generadores principales. (Rafael Cal y Mayor Reyes Spíndola, 1994).

Calles Secundarias (colectoras).- Son las que ligan las calles principales con las calles locales, proporcionando a su vez acceso a las propiedades colindantes. (Capitulo II, el usuario y la Viabilidad del vehículo) (Rafael Cal y Mayor Reyes Spíndola, 1994, pág. 107).

Calles Locales.- Proporcionan acceso directo a las propiedades, sean estas residenciales, comerciales, industriales o de algún otro uso; además se conectan directamente con las calles colectoras y/o con las calles principales. (Tipos de vías y elementos de sección transversal; Universidad de Oriente). (Rafael Cal y Mayor Reyes Spíndola, 1994, pág. 107).

2.2. Pavimento

Es la superficie de rodamiento formado por un conjunto de capas de distintos materiales que se colocan sobre el terreno natural (sub-rasante), capaz de soportar las cargas impuestas por el tránsito durante el período para el cual fue diseñada la estructura del pavimento. Entre los materiales utilizados en la pavimentación urbana están los suelos con mayor capacidad de soporte, los materiales rocosos, el hormigón y las mezclas asfálticas.

2.2.1. Clasificación de los pavimentos.

Los pavimentos se clasifican en: pavimentos flexibles, pavimentos semi rígidos o semi flexibles, pavimento rígido y pavimento articulado. (ALFONSO, 2002, pág. 2).

Los más comunes son: pavimento flexibles (material bituminoso de asfalto) y pavimento rígidos (concreto hidráulico), la diferencia entre estos dos tipos de pavimentos es la distribución de las cargas de las ruedas que se producen en ellas y la resistencia a flexión.

2.3. Pavimentos flexibles

Se caracterizan por ser un sistema multicapas, con las capas de mejor calidad cerca de la superficie donde las tensiones son mayores. La carpeta de rodadura está formada por una mezcla bituminosa de asfalto altamente resistente.

2.3.1. Elementos que conforman un pavimento flexible.

2.3.1.1. Sub-rasante.

Es la capa de suelo preparado y compactado para soportar una estructura de pavimento, puede estar constituida por el suelo natural o estabilizado por material de préstamo debidamente compactado para alcanzar el 95% de la máxima densidad seca obtenida mediante el ensayo de proctor modificado. (MOP-001-F-2002, 2002).

2.3.1.2. Sub-base.

Se denomina sub-base a la capa granular localizada entre la sub-rasante y la base granular en los pavimentos flexibles, destinada a soportar, transmitir y distribuir las cargas aplicadas a la superficie de rodadura. (MOP-001-F-2002, 2002)

Las sub-bases deberán tener un índice de plasticidad menor que 6% y un límite líquido máximo de 25%. La capacidad de soporte corresponderá a un CBR igual o mayor del 30% (MOP-001-F-2002, 2002).

De acuerdo a las especificaciones de MTOP las sub-bases de agregados se clasifican en tres clases:

- Sub-base clase 1.- Estas son sub-bases construidas con agregados obtenidos por trituración de piedras o gravas, y graduados uniformente de gruesos a finos. (MOP-001-F-2002, 2002).
- Sub-base clase 2.- Estas son sub-bases construidas con agregados obtenidos por cribato de piedras obtenidas de una mina o de gravas graduadas uniformemente de grueso a fino dentro de los límites de graduación. (MOP-001-F-2002, 2002).
- Sub-base clase 3.- Estas son sub-bases construidas con material obtenido de la excavación para la plataforma, o de fuentes de préstamo; igualmente deben cumplir estos materiales con la graduación. (MOP-001-F-2002, 2002).

2.3.1.3. Base granular.

La base es la capa que sigue a la sub-base en orden ascendente, la base debe de reunir las siguientes características: no sufrir cambio de volúmenes, resistir a los cambio de humedad y temperatura, tener un límite liquido menor que 25%, tener un índice plástico menor que 6%, CBR mayor que 50%, desgaste de agregado grueso máximo 40%, y su graduación debe ser uniforme. (MOP-001-F-2002, 2002).

De acuerdo a la clasificación hecha por el MTOP las bases se clasifican en las siguientes clases:

- Base Clase 1.- Son bases construidas con agregados gruesos y agregados finos triturados en un 100%.
- Base Clase 2.- Son bases construidas con el 50% o más de agregados gruesos triturados.
- Base Clase 3.- Son bases construidas por lo menos con el 25% de agregados gruesos triturados.
- Base Clase 4.- Son bases construidas con agregados obtenidos por cribado de piedras o gravas. (MOP-001-F-2002, 2002).

2.3.1.4. Carpeta de rodadura.

Es la capa final del pavimento sobre la cual circularán los vehículos; por estar en contacto directo con el medio, debe ser el más resistente, mejor acabado y en constante mantenimiento.

La capa de rodadura debe proporcionan al pavimento flexible una superficie de rodamiento estable, capaz de resistir la aplicación directa de las cargas, la fricción de las llantas los refuerzos de drenaje, los producidos por la fuerza centrífuga, los impactos, etc.

La capa de rodadura puede clasificarse en los siguientes tipos: capas de rodadura granulares estabilizados con finos, capas de rodadura estabilizadas con asfalto y capas de rodadura formadas con concreto de cemento portland.

2.3.2. Variables para el diseño de pavimento flexible.

2.3.2.1. Periodo de diseño.

Es el tiempo total para el cual se diseña un pavimento, la vida útil es el periodo medido a partir de la construcción o rehabilitación de pavimento hasta el momento que este alcanza un grado de serviciabilidad mínimo.

2.3.2.2. Tránsito.

El tránsito es el flujo de vehículos que circulan o circularan en una vía, calle o autopista. El tránsito es fundamental para el diseño de una carretera permitiendo determinar las cargas dadas por ejes equivalentes de 18 kips o Esal´s, a través de los factores equivalentes de cargas LEF.

2.3.2.3. Confiabilidad.

Se entiende por confiabilidad al grado de certidumbre de que un diseño puede llegar al fin de su periodo de análisis en buenas condiciones.

2.3.2.4. Serviciabilidad.

La Serviciabilidad se la define como la capacidad de servir al tipo de tránsito para el cual ha sido diseñada. El índice se serviciabilidad está dado en PSI mediante el cual el pavimento está calificado entre 0 (pésima condiciones), y 5 (perfecto).

La serviciabilidad inicial es función del diseño de pavimento y de la calidad de la construcción. La serviciabilidad final es función de la categoría del camino y es basada al criterio del proyectista.

2.3.2.5. Drenaje.

Se debe proteger la sección estructural de los pavimentos asfalticos de los efectos del agua exterior que pudiera penetrar en ellas.

2.3.2.6. Propiedades de los materiales.

Para el diseño de pavimento flexible se usa el módulo resiliente, tanto para la determinación del número estructural SN así como para, en función de los materiales que componen cada capa del paquete estructural.

2.3.2.7. Numero estructural (SN).

Es una cifra abstracta que presenta la resistencia total de un pavimento para unas determinadas condiciones de sub-rasante, transito, índice de servicio y condiciones ambientales.

2.3.2.8. Módulo resiliente de la sub-rasante, Mr.

El módulo resiliente es la propiedad que caracteriza los materiales de subrasante en el método AASHTO. Este se considera una medida de las propiedades elásticas del suelo que presentan ciertas características no lineales.

2.4. Tráfico

El diseño de una carretera o de un tramo de la misma depende del tráfico, con el objeto de compararlo con la capacidad o sea con el volumen máximo de vehículos que una carretera puede absorber. El tráfico, en consecuencia, afecta directamente a las características del diseño geométrico. (MOP-2003, 2003, pág. 11).

La información sobre el tráfico debe comprender la determinación del tráfico actual (volúmenes y tipos de vehículos), y a estudios de tráfico futuro utilizando pronósticos. (MOP-2003, 2003, pág. 11).

2.4.1. Trafico promedio diario anual.

Es el volumen del tráfico promedio diario anual cuya abreviación es el TPDA, para el cálculo se debe tomar en cuenta lo siguiente: (MOP-2003, 2003, pág. 11).

- En vías de un solo sentido de circulación, el tráfico será el contado en ese sentido. (MOP-2003, 2003, pág. 12).
- En vías de dos sentidos de circulación, se tomará el volumen de tráfico en las dos direcciones, normalmente para este tipo de vías el número de vehículos al final del día es semejante en los dos sentidos de circulación. (MOP-2003, 2003, pág. 12).

2.4.1.1. Tipos de conteo.

Manuales.- Se requieren de personas que registren la cantidad de vehículos que se movilizan en el punto o estación de conteo, en ésta se contabilizan la cantidad de automotores livianos, pesados, que pasaran en un intervalo de tiempo.

Automáticos.- Los fijos, éstos se instalan como una estructura empotrada en casetas o garitas de peajes y sirven para realizar conteos a un plazo largo, estas pueden ser accionadas por células fotos eléctricas y ondas ultrasónicas estos contadores se lo utilizan a largo plazo.

2.4.1.2. Variaciones.

Para llegar a obtener el TPDA a partir de una muestra, existen cuatro factores de variación que son: (MOP-2003, 2003, pág. 14).

Factor Horario (FH). Nos permite transformar el volumen de tráfico que se haya registrado en un determinado número de horas a volumen diario promedio. (MOP-2003, 2003, pág. 14).

Factor Diario (FD). Transforma el volumen de tráfico diario promedio en volumen semanal promedio. (MOP-2003, 2003, pág. 15).

Factor Semanal (FS). Transforma el volumen semanal promedio de tráfico en volumen mensual promedio. (MOP-2003, 2003, pág. 16).

Factor Mensual (FM). Transforma el volumen mensual promedio de tráfico en tráfico promedio diario anual. (MOP-2003, 2003, pág. 16).

2.4.2. Tráfico futuro.

El pronóstico del volumen y composición del tráfico se basa en el tráfico actual, los diseños se basan en una predicción del tráfico a 15 o 20 años y de factores como el crecimiento normal del tráfico, el tráfico generado y el crecimiento del tráfico por desarrollo. (MOP-001-F-2002, 2002, pág. 16).

2.5. Velocidad

Considerando la velocidad como indicador principal de la calidad de operación a través de un sistema de transporte.

La Velocidad debe ser estudiada, regulada y controlada con el fin de que origine un perfecto equilibrio entre el usuario, el vehículo y la vía, de tal manera que siempre se garantice la seguridad.

2.6. Estudios de suelos

El objeto de un estudio de suelos, para la construcción de un proyecto vial es con el fin de prever el comportamiento de los suelos, durante la construcción o cuando se encuentre en servicio la carretera; debido a que el suelo está sometido a la acción de agentes atmosférico que puede debilitar su capacidad para soportar cargas.

2.6.1. Contenido de humedad.

Es la relación existente entre el peso de agua contenido en la toma y el peso de la muestra luego de ser secada al horno.

2.6.2. Límites de Atterberg o límites de consistencia.

Por límites de consistencia se entiende al grado de cohesión de las partículas de un suelo y su resistencia a aquellas fuerzas exteriores que tienden a deformar o destruir su estructura. Los límites de atterberg de un suelo, están representados por contenidos de humedad. Los principales límites de atterberg se conocen con los nombres de: limite líquido, limite plástico y límite de contracción.

2.6.2.1. Limite líquido.

Es el contenido de humedad que tiene un suelo al momento de pasar del estado líquido al plástico.

2.6.2.2. Limite plástico.

Es el contenido de la humedad que tiene un suelo al momento de pasar del estado plástico al semisólido.

2.6.2.3. Límite de contracción.

Es el contenido de humedad que tiene un suelo al momento de pasar del estado semisólido al sólido.

2.6.3. Índice Plástico.

Es la diferencia entre el límite líquido y el límite plástico. El índice plástico ayuda a establecer si un suelo es o no plástico y, además determina su grado de plasticidad.

2.6.4. Granulometría.

El análisis granulométrico consiste en clasificar por tamaños los distintos granos que componen las muestras del suelo en estudio con el fin de clasificar los suelos gruesos con los finos.

2.6.4.1. Sistema de clasificación de los suelos.

La clasificación de los suelos consiste en incluir un suelo en un grupo que presenta un comportamiento semejante. Además, pretende agrupar los suelos que reúnan unas determinadas características físicas y como resultados de ellas unas propiedades constructivas determinadas.

Existen varios sistemas de clasificación de los suelos, de los cuales los más utilizados en nuestro país en la construcción de carreteras son dos:

Método de clasificación de los suelos según la AASHTO.

Sistema unificado de clasificación de los suelos (SUCS).

2.6.4.1.1. Sistema unificado de clasificación de los suelos (SUCS).

Es un método rápido para identificar y agrupar a los suelos. En esta clasificación los suelos se dividen en tres grupos:

Suelos granulares: son las gravas y arenas, estos suelos al ser sometido al tamizado más del 50% queda retenido en el tamiz No. 200.

Suelos finos: se consideran suelos de granos finos los suelos que al ser sometido al tamizado más del 50% pasa por el tamiz No. 200; en este se hayan los limos o arcillas de alta o baja plasticidad.

Suelos de estructura orgánica: son suelos turbosos u otros de alto contenido orgánico. Son fácilmente identificables por su olor y color; son esponjosos y su textura es frecuentemente fibrosa.

2.6.4.1.2. Método de clasificación de los suelos AASHTO.

Esta clasificación se basa en los resultados obtenidos al pasar un suelo por los tamices No. 10, 40, 200. Así como los limites líquidos y plástico del material que pasa el tamiz No. 40, con estos datos es posible clasificar el suelo en dos grandes grupos:

Suelos granulares: son aquellos que tienen 35% o menos del material fino que pasa el tamiz No. 200.

Suelos finos: son aquellos que contienen más del 35% del material que pasa el tamiz No. 200.

2.6.5. Ensayo de compactación.

El objeto del ensayo de compactación (AASHTO modificado: designación: T 180) es de determinar la densidad máxima y la humedad optima de los suelos.

Densidad **máxima.-** Es el peso unitario máximo que se puede llegar a obtener cuando se compacta un suelo.

Humedad optima.- Es la cantidad de agua incluida en un suelo para compactarlo y que produce la densidad máxima.

2.6.6. California bearing ratio (CBR).

El ensayo de CBR o valor de soporte de california es esencialmente un ensayo de penetración, cuya función específica es medir la resistencia del suelo a la acción de las cargas, antes de que este suelo alcance su última resistencia al esfuerzo cortante.

El CBR obtenido en laboratorio, es definitivo como una relación en porcentajes cuyos valores fluctúan entre cero y cien y se los mide en relación a un tipo de material estándar, constituido por rocas trituradas bien compactadas al 100%, el valor del CBR corresponderá a esta roca triturada.

El ensayo de CBR Comprende tres tipos de ensayos:

- Determinación de la densidad máxima y la humedad óptima.
- Determinación de las propiedades expansivas del material.
- Determinación de la resistencia a la penetración.

2.6.7. Topografía y características físicas del relieve.

La topografía para el diseño geométrico de un camino es de suma importancia, siendo este un factor determinante en la elección de los valores de los diferentes parámetros que intervienen en su diseño. (MOP-2003, 2003, pág. 4).

Al establecer las características geométricas de un camino, se lo hace en función de las características topográficas del terreno: llano, ondulado y montañoso, éste que a su vez puede ser suave o escarpado. (MOP-2003, 2003, pág. 4).

En función de estas consideraciones se ha establecido que en los estudios viales se ponga especial énfasis en el establecimiento del parámetro básico del diseño vial, que es la velocidad, la cual va íntimamente ligada con la topografía del terreno. De tal manera que en el diseño geométrico vial se asigna a la velocidad un valor alto para vías en terreno llano, un valor medio para vías en terreno ondulado y un valor bajo para vías en terreno montañoso.

(MOP-2003, 2003, pág. 4).

En terreno de topografía plana, por lo general, la vía se construye sobre elevada por razones de drenaje, para lo cual se utiliza el material de préstamo, que puede ser local o importado de algún sector cercano, con lo cual se establece que la topografía es un factor limitante debido al aumento en los costos de construcción de las obras menores de drenaje.

(MOP-2003, 2003, pág. 5).

CAPÍTULO III

TRÁFICO

3.1. Determinación de la demanda vehicular actual.

Demanda vehicular es la cantidad de vehículos que se encuentran sobre un determinado sistema vial u oferta vial. La Av. Alfredo Adúm consta actualmente con aceras, bordillos y sistema de drenaje.

3.1.1. Conteo de Tráfico.

Para determinar el tráfico promedio diario anual (TPDA) existente, se realizaron los conteos de tráfico mediante el procedimiento manual, considerando una estación de conteo ubicada en la ciudadela Ponce Moran en las calles Alfredo Adúm y Calle A, este conteo se llevó a cabo los días sábado 28, domingo 29, lunes 30 y martes 31 de mayo del 2016, durante un periodo de ocho horas diarias.

Figura 2. Punto de control para el conteo de tráfico

Fuente: Google Earth

Para el registro del tráfico se utilizó un formato con la clasificación general de los vehículos, el que se presenta a continuación.

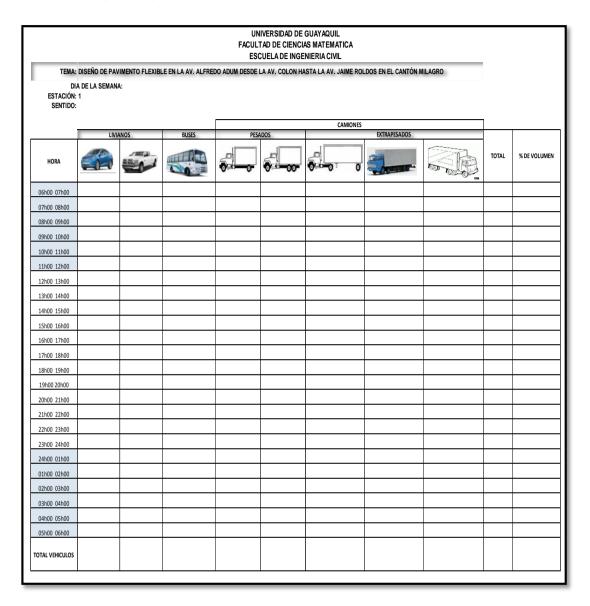


Figura 3. Formato para el conteo de tráfico

Fuente: Torres Estefanía, Maita Galo.

3.1.2. Tráfico promedio diario semanal.

El conteo nos permite conocer la cantidad total y porcentaje de vehículos que circulan, lo que se detalla en la siguiente figura:

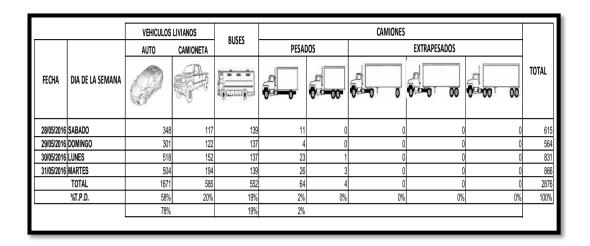


Figura 4. Calculo del porcentaje de tráfico diario semanal Fuente: Torres Estefanía, Maita Galo.

Entonces:

Estación de conteo TPD= 2876 Veh. Mixtos/día/ambos sentidos

El tráfico promedio semanal en la estación de conteo se obtiene por medio de la siguiente ecuación:

$$T.P.D.S. = \frac{5}{7} \sum \frac{D_n}{m} + \frac{2}{7} \sum \frac{D_e}{m}$$

(Ecuación 1)

Donde:

T.P.D.S.= Tráfico Promedio Diario Semanal

 $\Sigma = Sumatoria$

 $D_n = \text{Días Normales (lunes, martes, miércoles, jueves y viernes)}$

 $D_e = \text{Días Feriados (sábado, domingo)}$

m = Número de días que se realizó el conteo

Aplicando la ecuación 1 con ciertas modificaciones debido a que solo se realizaron conteos durante 4 días de la semana. Se obtuvo el siguiente T.P.D.S.

$$T.P.D.S. = \frac{5}{7}X\frac{(831 + 866)}{2} + \frac{2}{7}X\frac{(615 + 564)}{2}$$

T.P.D.S. = 775 Veh. Mixtos/día/ambos sentidos

3.1.3. Variaciones de tráfico.

Se conoce como variación del tránsito a los factores de expansión considerando el hecho de que la población se mueve por hábitos, estas variaciones permanecerá constantes en un periodo más o menos largo, llegando así a determinar el TPDA del año en el que se realiza presente estudio.

3.1.3.1. Factor de ajuste mensual.

Estos factores de ajustes mensuales fueron obtenidos de la Dirección de estudios del MTOP para el año 2011.

Tabla 2.Factor de ajuste mensual.

FACTOR DE ESTACIONALIDAD MENSUAL							
ENERO	1,07						
FEBRERO	1,132						
MARZO	1,085						
ABRIL	1,093						
MAYO	1,012						
JUNIO	1,034						
JULIO	1,982						
AGOSTO	0,974						
SEPTIEMBRE	0,923						
OCTUBRE	0,931						
NOVIEMBRE	0,953						
DICIEMBRE	0,878						

Fuente: MTOP para el año 2011.

Factor de ajuste mensual para el mes de mayo es= 1.012

3.1.3.2. Factor Diario.

Los factores diarios los obtenemos en base al conteo de la semana

$$FD = \frac{TPDS}{TD}$$

(Ecuación 2)

Tabla 3. Calculo del factor diario

FECHA	DIA	CONTEO DIARIO (TDd)	FACCTOR DIARIO TPDS/TDd
28/05/2016	SABADO	615	1,26
29/05/2016	DOMINGO	564	1,37
30/05/2016	LUNES	831	0,93
31/05/2016	MARTES	866	0,89
T	OTAL	2876	1,1125
T.	P.D.S.	775	

Fuente. Torres Estefanía, Maita Galo

Por lo tanto el factor diario es 1,1125

3.1.4. Tráfico promedio diario anual.

El tráfico promedio diario anual se obtiene mediante la siguiente ecuación:

$$TPDA = TPDS(Fm)(Fd)$$

$$TPDA_{EXISTENTE} = 775(1.012)(1.1125)$$
(Ecuación 3)

 $TPDA_{EXISTENTE} = 873 \text{ Veh. Mixtos/día/ambos sentidos.}$

3.2. Determinación de la demanda proyectada.

3.2.1. Tráfico futuro.

Para la proyección del tráfico futuro previamente se debe obtener el valor del tráfico asignado, según la siguiente expresión:

$$Trafico \ asignado = T.P.D.A._{existente} + TG + TD$$
 (Ecuación 4)

3.2.1.1. Transito generado.

Es el tránsito de viajes totalmente nuevos y viajes que antes se hacían por otro medio de transporte. Al tránsito generado se le asignan tasas de incremento entre el 5% y el 25% del tránsito actual, con un periodo de generación de uno o dos años después de que la carretera ha sido abierta al servicio.

$$Tg = 20\% T.P.D.A.$$

(Ecuación 5)

$$Tg = 20\%$$
 (873)

Tg = 175 Veh. Mixtos/día/ambos sentido.

3.2.1.2. Tránsito desarrollado.

Es aquel que se le debe asignar al camino en virtud del desarrollo del uso de suelo producido por la nueva facilidad vial. Para el tránsito desarrollado se le asigna una tasa del 5% del tránsito actual.

$$Td = 5\% \, T. \, P. \, D. \, A.$$
 (Ecuación 6) $Td = 5\% \, (873)$

Td = 44 Veh. Mixtos/día/ambos sentido.

3.2.2. Tránsito asignado.

Ahora podemos calcular el tránsito asignado con el cual se realizará la proyección a 15 años.

$$T\ asig = T.P.D.A.\ existente + Tg + TD$$
 (Ecuación 7)
$$T\ asig = 873 + 175 + 44$$

T asig = 1092 Veh. Mixtos/día/ambos sentido.

Luego, realizamos la composición del tránsito.

Tabla 4 Composición del trafico promedio diario semanal. (TPDS)

TIPO DE VEHICULO	NUMERO	%
LIVIANOS	616	79,48%
AUTOBUSES	138	17,81%
CAMIONES	21	2,71%
TOTAL	775	100%

Fuente: Torres Estefanía, Maita Galo.

Tabla 5. Composición del tráfico asignado. (t asig.)

TIPO DE VEHICULO	NUMERO	%
LIVIANOS	868	79,48%
AUTOBUSES	194	17,81%
CAMIONES	30	2,71%
TOTAL	1092	100%

Fuente: Torres Estefanía, Maita Galo.

3.2.3. Proyección del tráfico a 15 años (Tf).

Con el tráfico asignado se realizara la composición del tránsito y su composición a 15 años, mediante el siguiente modelo exponencial expresado mediante la siguiente formula.

$$Tf = T_{asig.}(1+i)^n$$

(Ecuación 8)

Tf = Tráfico futuro o proyectado

 $T_{asig.}$ = Tráfico asignada

i = Tasa de crecimiento del tráfico

n =Periodo de proyección, expresado en años

Tabla 6. Tasa de crecimiento según el tipo de vehículos

TASAS DE CRECIMIENTO	LIVIANOS	BUSES	CAMIONES
2015-2020	3,75	1,99	2,24
2020-2025	3,37	1,8	2,02
2025-2030	3,06	1,63	1,84

Fuente: MTOP.

								TIPO D	E VEHI(CULO								
AÑO	n	CREC.	AUTOMOVIL	CREC.	CAMIONETA	CREC.	BUS	CREC.	C2P	CREC.	C3	CREC.	C2-S1	CREC.	C2-\$2	CREC.	C3-S2	TOTAL
2016		3,75	645	3,75	223	1,99	194	2,24	28	2,24	1	2,24	0	2,24	0	2,24	0	1092
2017	1	3,75	670	3,75	231	1,99	198	2,24	29	2,24	1	2,24	0	2,24	0	2,24	0	1129
2018	2	3,75	695	3,75	240	1,99	202	2,24	29	2,24	1	2,24	0	2,24	0	2,24	0	1167
2019	3	3,75	721	3,75	249	1,99	206	2,24	30	2,24	2	2,24	0	2,24	0	2,24	0	1208
2020	4	3,75	748	3,75	258	1,99	210	2,24	31	2,24	2	2,24	0	2,24	0	2,24	0	1249
2021	5	3,37	762	3,37	263	1,8	213	2,02	31	2,02	2	2,02	0	2,02	0	2,02	0	1271
2022	6	3,37	787	3,37	272	1,8	216	2,02	32	2,02	2	2,02	0	2,02	0	2,02	0	1309
2023	7	3,37	814	3,37	281	1,8	220	2,02	32	2,02	2	2,02	0	2,02	0	2,02	0	1349
2024	8	3,37	841	3,37	290	1,8	224	2,02	33	2,02	2	2,02	0	2,02	0	2,02	0	1390
2025	9	3,37	870	3,37	300	1,8	228	2,02	34	2,02	2	2,02	0	2,02	0	2,02	0	1434
2026	10	3,06	872	3,06	301	1,63	229	1,84	34	1,84	2	1,84	0	1,84	0	1,84	0	1438
2027	11	3,06	899	3,06	310	1,63	232	1,84	34	1,84	2	1,84	0	1,84	0	1,84	0	1477
2028	12	3,06	927	3,06	320	1,63	236	1,84	35	1,84	2	1,84	0	1,84	0	1,84	0	1520
2029	13	3,06	955	3,06	329	1,63	240	1,84	36	1,84	2	1,84	0	1,84	0	1,84	0	1562
2030	14	3,06	984	3,06	340	1,63	244	1,84	36	1,84	2	1,84	0	1,84	0	1,84	0	1606
2031	15	3,06	1014	3,06	350	1,63	248	1,84	37	1,84	2	1,84	0	1,84	0	1,84	0	1651
		Σ	13204	Σ	4557	Σ	3540	Σ	521	Σ	29	Σ	0	Σ	0	Σ	0	

Figura 5. Calculo del tráfico futuro.

Fuente: Torres Estefanía, Maita Galo.

 $\mathit{TPDA}_f = 1651 \, \mathsf{Veh}. \, \mathsf{Mixtos/dia/ambos} \, \mathsf{sentidos}$

Calculado el tráfico futuro para 15 años y revisando la tabla de clasificación de vías según las especificaciones técnicas del MTOP. La vía en estudio es una colectora Clase II.

Tabla 7. Normas de diseño geométrico 2002

FUNCIÓN	CLASE DE CARRETERA (según MOP)	TPDA (1) (AÑO FINAL DE DISEÑO)
CORREDOR	RI-RII (2)	> 8000
ARTERIAL	1	3000-8000
	II	1000-3000
COLECTORA	III	300-1000
	IV	100-300
VECINAL	V	< 100

Fuente: Normas de diseño geométrico 2002.

3.3. Calculo de ESAL's

Los factores de equivalencia de carga por eje que básicamente expresan la relación entre la perdida de serviciabilidad causada por una carga dada de un tipo de eje y la producida por un eje estándar de 8,2 ton. Diferenciando nuestros vehículos procedemos al cálculo de LEF (Factor de equivalencia de carga).

Lx/Ton	Lx/Kips	L18	L2x	L2s	Pt	SN	G	Вх	G/BX	B18	G/B18	WX/W18	LEF
1	2,2	18	1	1	2	5	-0,0889	0,4003	-0,2222	0,5001	-0,1779	4584,0173	0,0002
2	4,4	18	1	1	2	5	-0,0889	0,4017	-0,2214	0,5001	-0,1779	374,5625	0,0027
3	6,6	18	1	1	2	5	-0,0889	0,4052	-0,2195	0,5001	-0,1779	73,1961	0,0137
4	8,8	18	1	1	2	5	-0,0889	0,4118	-0,2160	0,5001	-0,1779	21,8339	0,0458
7	15,4	18	1	1	2	5	-0,0889	0,4622	-0,1924	0,5001	-0,1779	1,9569	0,5110
11	24,2	18	1	1	2	5	-0,0889	0,6491	-0,1370	0,5001	-0,1779	0,2840	3,5208
18	39,6	18	2	1	2	5	-0,0889	0,5340	-0,1665	0,5001	-0,1779	0,4837	2,0675
20	44	18	2	1	2	5	-0,0889	0,5855	-0,1519	0,5001	-0,1779	0,3090	3,2357
24	52,8	18	3	1	2	5	-0,0889	0,4934	-0,1803	0,5001	-0,1779	0,6643	1,5052

Figura 6. Calculo de factor de equivalencia de carga LEF.

Fuente: Torres Estefanía, Maita Galo.

Dónde:

Lx =Carga del eje en Kips.

L18= 18 kips (cargas del eje estándar).

L2x = Factor que depende del tipo de eje (1 para eje simple, 2 para eje tándem y 3 para eje tridem).

L2s= código para eje estándar, igual a 1 (eje simple).

Pt = Serviciabilidad final.

SN= Numero Estructural.

G= función de la proporción de la pérdida de serviciabilidad en un tiempo t, para la pérdida potencial observada en el punto donde Pt=1,5; se la calcula con la siguiente ecuación:

$$G = \log\left(\frac{4,2 - pt}{4,2 - 1,5}\right)$$

(Ecuación 9)

 $\beta =$ Función que determina la relación entre la serviciabilidad y aplicaciones de eje de carga

$$\beta_x = 0.4 + \frac{0.081(Lx + L2x)^{3,23}}{(SN+1)^{5,19}L2x^{3,23}}$$
 (Ecuación 10)
$$\beta_{18} = 0.4 + \frac{0.081(L18 + L2x)^{3,23}}{(SN+1)^{5,19}L2x^{3,23}}$$

(Ecuación 11)

Wx= Inverso de los factores de equivalencia de aplicación de ejes.

W18= número de ejes simples de 18000 lb (80 kN).

$$\frac{Wx}{W18} = \left(\frac{L18 + L2s}{Lx + L2x}\right)^{4,79} \left(\frac{10^{\frac{G}{\beta x}}}{10^{\frac{G}{\beta 18}}}\right) (L2x)^{4,33}$$

(Ecuación 12)

Una vez realizada el cálculo de nuestro factor de equivalencia de carga se procede a calcular el factor camión para cada clase de vehículo.

Tabla 8. Calculo de factor camión por vehículo

	CLASE DE VEHICULOS	EJE DELANTERO (Ton)	EJE MEDIANERO (Ton)	EJE TRASERO (Ton)	Factor Camión
	AUTOMOVILES	1		1	0,00044
	CAMIONETAS	1		2	0,00289
	BUS	7		18	2,57855
	C2P	3		7	0,52468
3A	СЗ	7		20	3,74677
251	C2-S1	7	11	11	7,55253
252	C2-S2	7	11	20	7,26752
352	C3-S2	7	20	20	6,98251

Fuente: Torres Estefanía, Maita Galo.

Para realizar el cálculo de los esal's se requiere el porcentaje de crecimiento para los diferentes tipos de vehículos, como se muestra en la siguiente tabla.

Tabla 9. Porcentaje de crecimiento

TASAS DE CRECIMIENTO	Año 2016
LIVIANOS	3,75
BUSES	1,99
CAMIONES	2,24

Fuente: MTOP.

Por medio del porcentaje de crecimiento se determina el factor de crecimiento para un periodo de diseño de 15 años, utilizando el siguiente cuadro:

Diseño, años (n)	Ningún Crecimiento	2	4	5	6	7	8	10
1	1	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2 3	2	2,02	2,04	2,05	2,06	2,07	2,08	2,10
3	2 3	3,06	3,12	3,15	3,18	3,21	3,25	3,31
4	4	4,12	4,25	4,31	4,37	4,44	4,51	4,64
5	5	5,2	5,42	5,53	5,64	5,75	5,87	6,11
6	5	6,31	6,63	6,80	6,98	7,15	7,34	7,72
7	7	7,43	7,90	8,14	8,39	8,65	8,92	9,49
8	8	8,58	9,21	9,55	9,90	10,26	10,64	11,44
9	9	9,75	10,58	11,03	11,49	11,98	12,49	13,58
10	10	10,95	12,01	12,58	13,18	13,82	14,49	15,94
11	11	12,17	13,49	14,21	14,97	15,78	16,65	18,53
12	12	13,41	15,03	15,92	16,87	17,89	18,98	21,38
13	13	14,68	16,63	17,71	18,88	20,14	21,50	24,52
14	14	15,97	18,29	19,60	21,02	22,55	24,21	27,97
15	15						27,15	
16	16	18,64	21,82	23,66	25,67	27,89	30,32	35,95
17	17	20,01	23,70	25,84	28,21	30,84	33,75	40,54
18	18	21,41	25,65	28,13	30,91	34,00	37,45	45,60
19	19	22,84	27,67	30,54	33,76	37,38	41,45	51,16
20	20	24,3	29,78	33,07	36,79	41,00	45,76	57,27
25	25	32,03	41,65	47,73	54,86	63,25	73,11	98,35
30	30	40,57	56,08	66,44	79,06	94,46	113,28	164,49
35	35	49,99	73,65	90,32	111,43	138,24	172,32	271,02
	halt Institute's $r = \frac{\text{tasa}}{100}$ y no			7-1-1-1-1			ctor de C	recimiento = l

Figura 7. Factor de crecimiento Fuente: Guía de diseño AASHTO

Donde por ultimo realizamos el cálculo de Esal's aplicada en el periodo de diseño a 15 años con su factor de crecimiento detallado en la siguiente tabla.

Tabla 10. Calculo de Esal's

CLASE DE VEHICULOS	Trafico Asignado	DD	LD	FACTOR CAMION FC	Factor de Crecimiento	ESAL'S
AUTOMOVILES	645	50	100	0,000436299	20,02	1028,82
CAMIONETAS	223	50	100	0,002887931	20,02	2349,27
BUS	194	50	100	2,578546504	17,45	1596947,93
C2P	28	50	100	0,524682885	17,79	48012,52
C3	1	50	100	3,746767084	17,79	17142,90
C2-S1	0	50	100	7,552534431	17,79	0,00
C2-S2	0	50	100	7,267523826	17,79	0,00
C3-S2	0	50	100	6,982513221	17,79	0,00
			•		TOTAL	1.665.481,44

Fuente: Torres Estefanía, Maita Galo.

Dónde:

DD: Factor de distribución por dirección; se consideró el 50% de tránsito para cada dirección.

LD= Factor de distribución por carril; en la tabla siguiente se muestran los valores utilizados en la AASHTO 1993:

Tabla 11. Guide for designe of pavement Structures 1993

LD %
100
80-100
60-80
50-75

Fuente: AASHTO 1993.

3.4. Estudios de suelos

La toma de muestras necesarias para determinar las características del suelo en la zona de estudio, se realizaran conforme lo establecen las especificaciones del MOP-2002. Para obtener la muestra en el campo se realizaron calicatas en las abscisas 0+550 y 1+000, con una profundidad de 1.50 metros, que permitió identificar el suelo situado.

Las muestras obtenidas han sido sometidas a los ensayos de: Granulometría para clasificar los suelos por el método SUCS Y AASHTO, Limites de Atterberg, Proctor Modificado T 180 A, y CBR obteniendo la capacidad portante del suelo en la sub-rasante al 95% de la humedad óptima.

3.4.1. Resultados Obtenidos.

Se presenta una figura de resumen para la sub-rasante en las dos calicatas realizadas con sus ensayos respectivos, al igual que la clasificación mediante los sistemas AASHTO y SUCS:

	Proyecto:	Diseí	iseño de Pavimento Flexible en la Av. Alfredo Adum									Fecha:	201	6-06-20						
		entre	ntre Av. Colón y Av. Jaime Roldos.																	
		Sub-Rasante																		
No.	TIPO DE		GRANULOMETRIA QUE PASA LIMITES PROCI								PROCT	FOR	C.B.R	Clasific	cación					
	MUESTRA	3"	2 1/2	2"	1 1/2	1"	3/4"	1/2"	3/8"	4	10	40	200	Liquido	I.P	M.D	H.Op	95%	AASHTO	SUCS
1	Sub Rasante 0+550 Der (0,50)	100	100	100	100	100	100	100	100	100	100	100	93,5	42,36	14,64	1,76	18,58	1,12	A-7-6	ML
2	Sub Rasante 0+550 Der (1,00)	100	100	100	100	100	100	100	100	100	100	100	98,9	40,40	16,35				A-7-6	ML
3	Sub Rasante 1+000 Izq (0,50)	100	100	100	100	100	100	100	100	100	100	100	95,1	NP	NP	1,75	17,30	3,15	A-4	ML
4	Sub Rasante 1+000 Izq (1,00)	100	100	100	100	100	100	100	100	100	100	100	98,9	63,93	26,82				A-7-5	MH1
														•				•	•	•

Figura 8. Resumen de estudios de suelos en la sub-rasante

Fuente: Torres Estefanía, Maita Galo.

CAPITULO IV

DISEÑO DE PAVIMENTO FLEXIBLE POR EL MÉTODO AASHTO 93

4.1. Variables para el diseño de pavimento

Para el diseño de pavimento se ha considerado las características del tránsito en lo referente al volumen y composición obtenidos en el estudio realizado en el capítulo 3; y las propiedades del suelo de cimentación es decir la sub-rasante en la que implantara la estructura del pavimento.

La ecuación básica para pavimentos flexibles por el método AASHTO 93 es la siguiente:

$$Logw18 = ZrSo + 9.36 \operatorname{Log}(SN + 1) - 0.20 + \frac{\operatorname{Log}\left(\frac{\Delta PSI}{4,2 - 1,5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5,19}}} + 2.32 \operatorname{Log}*Mr - 8.07$$

(Ecuación 13)

4.1.1. Esal's (W18).

Los factores de equivalencia de carga por eje, expresan los daños al pavimento por cada tipo de vehículo liviano, buses y vehículos pesados, dando como resultado de estos estudios un Esal`s de diseño de 1'665.481,44

4.1.2. Confiabilidad (R).

El nivel de confiabilidad se determina mediante las recomendaciones de la AASHTO 93 como se detalla en la siguiente tabla:

Tabla 12. Niveles de confianza.

Tino de Comine	Confiabilidad Recomendada					
Tipo de Camino	Zona Urbana	Zona Rural				
Rutas interestatales y autopistas	85 a 99.9	80 a 99.9				
Arterias principales	80 a 99	75 a 99				
Colectoras	80 a95	75 a 95				
Locales	50 a 80	50 a 80				

Fuente AASHTO; Guide for designe of pavement Structures 1993

La vía en estudio es una colectora ubicada en la zona urbana del cantón Milagro; en la cual hemos considerado según dicha tabla el **80%** de confiabilidad.

A partir del valor de confiabilidad podemos encontrar el valor de la desviación normal estándar del nivel de confiabilidad recomendado por la AASHTO 93, según el siguiente cuadro:

Tabla 13. Desviación normal estándar del nivel de confiabilidad.

Confiabilidad, R en porcentaje	Desviación estándar normal, Zr
50	0,000
60	-0,253
70	-0,524
75	-0,674
80	-0,841
85	-1,037
90	-1,282
91	-1,340
92	-1,405
93	-1,476
94	-1,555
95	-1,645
96	1,751
97	1,881
98	-2,054
99	-2,327
99.9	-3,090
99.99	-3,750

Fuente: AASHTO; Guide for designe of pavement Structures 1993.

El valor de Zr para una confiabilidad de 80% es de -0,841

4.1.3. Desviación estándar (So).

La AASHTO recomienda valores de desviación estándar para pavimentos flexibles con una predicción de errores en el tránsito de 0,49 como lo dice en la siguiente tabla:

Tabla 14. Desviación Standard (So).

Condición de Diseño	Desvío Estándar	
Variación en la predicción del pavimento sin errores en el transito Variación en la predicción del pavimento con errores en el transito	0,34 (pav, rígidos) 0,44 (pav, flexibles) 0,39 (pav, rígidos) 0,49 (pav, flexibles)	

Fuente: AASHTO; Guide for designe of pavement Structures 1993.

4.1.4. Numero estructural (SN).

El número estructural a considerar se lo hizo por el método de tanteo hasta que exista una igualdad en la ecuación para el diseño de pavimento. Partiendo de los números estructurales se determinaron los espesores de capa del pavimento mediante la siguiente expresión:

$$SN = a1D1 + a2D2m + a3D3m$$

(Ecuación 14)

Donde:

aj= coeficiente de capa j.

Dj= espesor de la capa j.

mj= coeficiente de drenaje de la capa j.

Los valores recomendados por la AASHTO 93 para los coeficientes de capas son los siguientes:

Tabla 15. Coeficientes de capa.

COMPONENTES DEL	Coeficiente de capa en pulgadas							
PAVIMENTO	a1	a2	а3	a4				
Capa de rodadura (H. Asf.)	0,42							
Base: material triturado		0,135						
Sub-base: material granular			0,11					
Mejoramiento				0,095				

Fuente: AASHTO Guide for designe of pavement Structures 1993;

El coeficiente de drenaje a considerar fue de 0,80, teniendo en cuenta que existe una calidad de regular de drenaje como lo describe la siguiente tabla:

Tabla 16. Coeficiente de drenaje.

COEFICIENTES DE DRENAJE	
Calidad del Drenaje	m
Excelente	1.20
Bueno	1.00
Regular	0.80
Pobre	0.60
Muy pobre	0.40

Fuente: AASHTO; Guide for designe of pavement Structures 1993.

1.1.1. Servicia bilidad.

Para el diseño de pavimento se deben de elegir el índice se servicio inicial y final. La serviciabilidad inicial para pavimentos flexibles es de 4.2; y la serviciabilidad final para caminos de menor tránsito es de 2.00 según la AASHTO 93.

1.1.2. Módulo resiliente.

El módulo resiliente se lo obtiene a través del valor portante del suelo. El CBR obtenido en la sub-rasante es de 1,08; la cual se utilizara la siguiente ecuación para CBR <10% como dice la AASHTO 93.

$$Mr=1500\ CBR$$
 (Ecuación 15) $Mr=1500\ (1,22)$ $Mr=1830\ PSI$

El módulo resiliente de los materiales recomendados por la AASHTO 93 son los siguientes:

Tabla 17. Módulos resilientes de materiales

Módulos Resiliente de Materiales

Material	Normas	Mr (psi)
Concreto Asfáltico	E.M. 1800 Lb	400000
Base de piedra triturada	I.P.=<6 CBR=+80%	27000
Sub-base granular	I.P.=<6 CBR=+30%	15000
Mejoramiento	I.P.=<9 CBR=+20%	13000

Fuente: AASHTO; Guide for designe of pavement structures 1993.

1.2. Espesores de las capas del pavimento

Con todos los datos obtenidos tenemos como resultado los siguientes números estructurales de las capas.

Tabla 18. Número estructural de las capas de la estructura de pavimento

CÁLCULO DE LOS NUMEROS ESTRUCTURALES REQUERIDOS	
(SN) NÚMERO ESTRUCT REQUERIDO SUBRASANTE :	5,37
LOG (EJES ACUMULADOS) :	6,22
ECUACIÓN DE COMPROBACIÓN :	6,22
SN1 NÚMERO ESTRUCTURAL REQUERIDO (BASE GRANULAR)	
NÚMERO ESTRUCT REQUERIDO :	2,14
LOG (EJES ACUMULADOS) :	6,22
ECUACIÓN DE COMPROBACIÓN :	6,22
SN2 NÚMERO ESTRUCTURAL REQUERIDO (SUB BASE)	
NÚMERO ESTRUCT REQUERIDO :	2,65
LOG (EJES ACUMULADOS) :	6,22
ECUACIÓN DE COMPROBACION :	6,22
SN3 NÚMERO ESTRUCTURAL REQUERIDO (MEJORAMIENTO)	
NÚMERO ESTRUCT REQUERIDO :	2,79
LOG (EJES ACUMULADOS) :	6,22
ECUACIÓN DE COMPROBACIÓN :	6,22

Fuente: Torres Estefanía, Maita Galo.

Mediante el número estructural calculamos los espesores de las capas

Tabla 19. Espesores de las capas de la estructura de pavimento

	Espesor	Núm. Estr.	Espesor	Espesor	Espesor
CAPAS DEL PAVIMENTO	Núm. Estr.	corregido	cálculado	adoptado	adoptado
			(plg)	(plg)	(cm)
	D1* :		5,10	3,00	7,5
CAPA HORMIGON ASFÁLTICO :					
	SN1*:	1,26			
	D2* :		12,87	6,00	15,0
BASE GRANULAR CLASE 1:					
	SN2*:	0,65			
	D3* :		10,02	12,00	30,0
SUBBASE CLASE 3 MATERIAL EXISTENTE					
	SN3* :	1,06			
	D4* :		31,59	32,00	80,0
MEJORAMIENTO MATERIAL EXISTENTE					
	SN4* :	2,43			
TOTAL		5,40		53,0	132,5

Fuente: Torres Estefanía, Maita Galo

Comprobación de los espesores del diseño de pavimento flexible.

$$SN = D_1 a_1 + D_2 a_2 m + D_3 a_3 m + D_4 a_4 m$$

(Ecuación 16)

$$SN = 3(0,42) + 6(0,135)(0,8) + 12(0,11)(0,8) + 32(0,095)(0,8)$$

$$SN = 5,40$$

Figura 9. Estructura del Pavimento Flexible

Fuente: Torres Estefanía, Maita Galo

CAPITULO V

FACTORES GEOMÉTRICOS DEL DISEÑO VIAL

2.1. Velocidad de diseño

La velocidad de diseño es la máxima velocidad y es elegida para el diseño de la sección de la vía. La selección de la velocidad de diseño depende de varios factores como: clase de carretera, topografía del terreno, uso de la tierra, facilidades de acceso y disponibilidad de recursos económicos.

El presente proyecto es una vía colectora clase II, considerada una vía urbana del cantón Milagro; la velocidad de diseño para relieves llanos es de 50 Km/h como describe el siguiente cuadro:

VIAS COLECTORAS

VELOCIDAD DE PROYECTO
VELOCIDAD DE OPERACIÓN
20 - 40 Km/h

Fuente: Especificaciones vigentes del MTOP

2.2. Velocidad de circulación

La velocidad de circulación es una disposición de la calidad del servicio que brinda la vía a los usuarios. La velocidad disminuye con el aumento del volumen de tráfico. La velocidad de circulación es igual a la distancia total recorrida dividida para el tiempo en el que vehículo se encuentre en movimiento. La ecuación para

encontrar la relación que existe entre la velocidad de diseño con la velocidad de circulación para volúmenes de tráfico bajo es la siguiente:

$$VC = 0.8 VD + 6.5$$

(Ecuación 17)

Dónde:

VC= velocidad de circulación.

VD= velocidad de diseño 50 km/h (figura 12).

Con la velocidad de diseño previamente calculada y aplicando la ecuación nos da una VC= 46,5 Km/h = 47Km/m. El siguiente cuadro nos describe los valores de circulación dependiendo de la velocidad de diseño según el MTOP.

Tabla 21. Velocidades de circulación

	\/ELOCIDAE	NDE CIDCULA	CIÓNI ENLIZAZI
	VELOCIDAL	DE CIRCULA	CIÓN EN KM/H
VELOCIDAD DE DISEÑO EN km/H	Volumen de tránsito bajo	Volumen de tránsito intermedio	Volumen de tránsito alto
25	24	23	22
30	28	27	26
40	37	35	34
50	46	44	42
60	55	51	48
70	63	59	53
80	71	66	57
90	79	73	58
100	86	79	60
110	92	85	61

Fuente: Tabla de circulación - MTOP

2.3. Distancias de visibilidad

La distancia de visibilidad es la longitud continua de la vía, que es visible para el conductor del vehículo. La capacidad de visibilidad es de vital importancia para la seguridad y eficiencia del operador. Para el diseño de distancia de visibilidad de considera dos aspectos importantes:

- Distancia de parada o frenado de un vehículo.
- Distancia necesaria para el rebasamiento de un vehículo.

2.3.1. Distancia de visibilidad de parada de un vehículo.

La distancia de frenado es la longitud mínima en la que el conductor pueda parar su vehículo, a una velocidad igual o cercana a la de diseño. La distancia mínima de visibilidad para la parada de un vehículo es igual a la distancia que tiene el conductor cuando avizora un objeto en el camino (percepción – reacción) más la distancia cuando el operador aplica los frenos hasta detenerse, o sea:

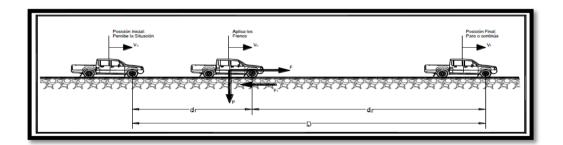


Figura 10. Distancia de visibilidad de parada

fuente:http://es.slideshare.net/freddyramirofloresvega/visibilidad-caminos.

$$d = d1 + d2$$

(Ecuación 18)

El tiempo de percepción es variable y equivale a 1,5 segundos debido a varias pruebas realizadas por la AASHTO, el tiempo de reacción se adopta de 1 segundo por razones de seguridad. Entonces d1 se calcula por la siguiente ecuación:

$$d1 = \frac{Vc\ t}{3.6}$$

(Ecuación 19)

$$d1 = \frac{2.5}{3.6} \ Vc = 0.6944 \ Vc = 0.6944 * 46 = 31.94 \ m$$

Dónde:

 $d1 = {\sf Distancia}$ recorrida durante un tiempo de percepción más la reacción (m).

Vc= es la velocidad de circulación (km/h).

t = Tiempo de percepción más la reacción.

La distancia de frenado sobre la calzada actúa la acción de la fricción desarrollada entra las llantas y la calzada; se calcula con la siguiente formula:

$$d2 P f = \frac{P V c^2}{2g}$$

(Ecuación 20)

Despejando d2 expresando la ecuación para Km/h:

$$d2 = \frac{Vc^2}{254 f}$$

(Ecuación 21)

Donde:

d2 = Distancia de frenaje (m).

f =Coeficiente de fricción longitudinal.

Vc=velocidad del vehículo al momento de aplicar los frenos (km/h).

P= peso del vehículo.

g = Gravedad.

Para el coeficiente de fricción longitudinal para pavimentos mojados se calcula por la siguiente ecuación:

$$f = \frac{1,15}{Vc^{0,3}} = \frac{1,15}{46^{0,3}} = 0,3646$$

(Ecuación 22)

Donde:

Vc: velocidad de circulación del vehículo (Km/h).

Entonces:

$$d2 = \frac{46^2}{254 (0,3646)} = 22,85 m$$

Remplazando la ecuación de parada nos da:

$$d = 31,94 + 22,85 = 54,79 m$$

En el siguiente cuadro están comprendidos los parámetros relacionados con las distancias de visibilidad de parada:

Tabla 22. Distancia de visibilidad mínima para parada de un vehículo.

Velocidad	Velocidad de	Reaco	epción + ción para enaje	Coeficiente	Distancia de Frenaje	Distancia de Visibilidad para parada (d=d1+d2)		
de Diseño- Vd (Kph)	Circulación Asumida-Vc (Kph)	Tiempo (seg)	Distancia Recorrida (m)	de Fricción Longitudinal	"d2" Gradiente cero (m)	Calculada (m)	Redondeada (m)	
20	20	2.5	13.89	0.47	3.36	17.25	20	
25	24	2.5	16.67	0.44	5.12	21.78	25	
30	28	2.5	19.44	0.42	7.29	26.74	30	
35	33	2.5	22.92	0.40	10.64	33.56	35	
40	37	2.5	25.69	0.39	13.85	39.54	40	
45	42	2.5	29.17	0.37	18.53	47.70	50	
50	46	2.5	31.94	0.36	22.85	54.79	55	
60	55	2.5	38.19	0.35	34.46	72.65	70	
70	63	2.5	43.75	0.33	47.09	90.84	90	
80	71	2.5	49.31	0.32	62.00	111.30	110	
90	79	2.5	54.86	0.31	79.25	134.11	135	
100	86	2.5	59.72	0.30	96.34	156.06	160	
110	92	2.5	63.89	0.30	112.51	176.40	180	
120	100	2.5	71.53	0.29	145.88	217.41	220	

Fuente: MTOP

2.3.2. Distancia de visibilidad para el rebasamiento de un vehículo.

Se define como la distancia de una vía que requiere un conductor para efectuar una maniobra de rebasamiento sin afectar la velocidad del otro vehículo cerca.

La distancia de visibilidad para rebasamiento está constituida por la sumatoria de cuatro distancias:

dr = d1 + d2 + d3 + d4(Ecuación 23)

Dónde:

d1 = Distancia recorrida por el vehículo que rebasa en el tiempo de percepciónreacción y durante la aceleración hasta alcanzar el carril izquierdo.

d2 = Distancia recorrida por el vehículo que rebasa durante el tiempo que ocupa el carril izquierdo.

d3 = Distancia entre el vehículo que rebasa y el vehículo que viene en sentido opuesto cuando se finaliza la maniobra. Se asume una distancia de 30 m a 90 m.

 $d\mathbf{4}=$ Distancia recorrida por el vehículo que viene en sentido opuesto durante 2/3 del tiempo empleado de d2.

Las distancias parciales se las calcula de la siguiente manera:

 $d1 = 0.14 \ t_1 (2V - 2m + at_1)$ (Ecuación 24) $d2 = 0.28 \ V \ t_2$ (Ecuación 25) $d3 = 30 \ \text{m a } 90 \ \text{m}$ (Ecuación 26) $d4 = 0.18V \ t_2$

 $4 = 0.18V t_2$ (Ecuación 27)

Donde:

 $t_1 = \text{Tiempo de maniobra inicial}$

V= velocidad promedio del vehículo rebasante

m =Diferencia de velocidades entre el vehículo rebosante y el rebasado

a = Aceleración promedio del vehículo rebasante.

 $oldsymbol{t}_2=$ Tiempo durante el cual el vehículo rebasante ocupa el carril del lado izquierdo.

Tabla 23. Distancia mínima de visibilidad.

VD km/h	Velocidades de los Vehículos, km/h		Distancia Mínima de Rebasamiento, (m)	
	Rebasado	Rebasante	Calculada (m)	Recomendada(m)
25	24	40		80
30	28	44		110
35	33	49		130
40	35	51	268	270 (150)
45	39	55	307	310 (180)
50	43	59	345	345 (210)
60	50	66	412	415 (210)
70	58	74	488	490 (380)
80	66	82	563	565 (480)
90	73	89	631	640
100	79	95	688	690
110	87	103	764	830
120	94	110	831	830

Fuente: MTOP.

2.4. Sección Típica

La sección típica es la representación del corte ideal de la vía, que permite definir la disposición y dimensiones de los elementos que conforman una carretera; tales como, calzada, bermas, cunetas, taludes y elementos complementarios.

Las especificaciones técnicas para vías colectoras según las ordenanzas municipales para el diseño de vías urbanas en el Ecuador.

Tabla 24. Especificaciones vigentes del MTOP.

VIAS COLECTORAS				
NUMERO MINIMO DE CARRILES	4 (2 por sentido)			
ANCHO DE CARRILES	3,5 m			
CARRIL DE ESTACIONAMIENTO LATERAL	Mínimo 2,00 m			
DISTANCIA VISIBILIDAD DE PARADA	40 Km/h = 45 m			
RADIO MINIMO DE CURVATURA	40 Km/h = 40 m			
GALIBO VERTICAL MINIMO	5,50 m			
RADIO MINIMO DE ESQUINAS	5 m			
SEPARACION DE CALZADAS	Separación con señalización horizontal. Puede tener parterre mínimo de 3 m.			
LONGITUD MAXIMA VIAS SIN RETORNO	300 m			
ACERAS	Mínimo 2,5 m, como excepción 2 m			

Fuente: MTOP.

2.4.1. Elementos de la sección de la vía.

2.4.1.1. Calzada.

La calzada es la superficie de la vía, sobre la que transitan los vehículos de manera segura y cómoda; no incluye berma.

Para una vía colectora según la figura 11 debe existir como mínimo 4 carriles, 2 por sentido con un ancho 3,5 cada carril dando un ancho de calzada mínima de 14 cm. En la actualidad la vía Alfredo Adúm cuenta con un ancho de calzada promedio de 11.00 m.

2.4.1.2. Cunetas.

Son canales abiertos construidos lateralmente a lo largo de la carretera, con el propósito de canalizar las aguas superficiales.

La profundidad o altura interior de la cuneta para zona urbana de 0,40 m medido verticalmente desde el extremo de la plataforma y hasta el punto más bajo de su fondo. En la actualidad la Av. Alfredo Adúm consta con una altura interior de cuneta de 0,40 m.

2.4.2. Curvas horizontales.

Las curvas circulares son los arcos del círculo que forman la proyección horizontal de las curvas empleadas para unir dos tangentes consecutivas; se definen por su ángulo central (deflexión) y por su radio de curvatura o radio. El grado máximo de curvatura (radio mínimo) es aquel que con la sobre elevación máxima permite a un vehículo recorrer con seguridad la curva.

(Aleman Vasques, Juarez Reyes, & Nerio Aguilar, Marzo 2015).

2.4.2.1. Curvas circulares simples.

Se definen cuando dos tangentes están unidas entre sí por una sola curva circular. Las curvas simples pueden ser hacia la izquierda o hacia la derecha. (Aleman Vasques, Juarez Reyes, & Nerio Aguilar, Marzo 2015).

2.4.2.2. Tangentes.

Las tangentes son la proyección sobre un plano horizontal de las rectas que unen las curvas, las cuales se definen por su rumbo y longitud. La longitud máxima de una tangente está condicionada por la seguridad. (Aleman Vasques, Juarez Reyes, & Nerio Aguilar, Marzo 2015).

Las tangentes largas son causa potencial de accidentes, debido a la somnolencia que produce al conductor mantener concentrada su atención en puntos fijos del camino durante mucho tiempo. (Aleman Vasques, Juarez Reyes, & Nerio Aguilar, Marzo 2015).

Por tal razón, conviene limitar la longitud de las tangentes, proyectando en su lugar alineamientos ondulados con curvas de gran radio. La longitud mínima de tangente entre dos curvas consecutivas está definida por la longitud necesaria para dar la sobre elevación y ampliación a esas curvas. (Aleman Vasques, Juarez Reyes, & Nerio Aguilar, Marzo 2015).

2.5. Diseño de curvas horizontales

Resumen cuadro de Curvas Calculadas

Tabla 25. Curvas calculadas.

CURVA	DELTA	RADIO	ARCO	STAN	CUERDA	Gc
C1	03°30'37.23"	1,145.92	70.21	35.11	70.20	01°0'0''
C2	10°35'38.36''	286.48	52.97	26.56	52.89	04°0'00''
C3	00°59'37.97''	3,437.75	59.63	29.82	59.63	00°20'0''
C4	01°24'22.70"	1,718.87	42.19	21.10	42.19	00°40'0''

Fuente: Torres Estefanía, Maita Galo

CAPITULO VI

Conclusiones y Recomendaciones

3.1. Conclusiones

- ✓ De acuerdo al estudio de tráfico realizado el tráfico futuro estimado a 15 años es de 1651 vehículos/mixtos ambos sentidos, y de acuerdo a la clasificación del MTOP es una vía colectora clase II
- ✓ La vía en estudio el terreno requiere material de mejoramiento debido a los CBR obtenidos en la sub-rasante de las dos calicatas son de mala calidad entre 1.12% y 3.15%.
- ✓ La realización de este proyecto de Diseño de Pavimento Flexible en la avenida Alfredo Adúm, beneficiara a los moradores del sector, por consiguiente mejora su calidad de vida.

3.2. Recomendaciones

- ✓ Se recomienda realizar el diseño de pavimento flexible calculado en este estudio.
- ✓ Se recomienda respetar los espesores calculados en el cual tendrá un mejoramiento de 75 cm, sub-base de 35cm, base 15 cm y carpeta de rodadura de 7.5 cm.
- ✓ Se recomienda hacer cumplir las normas y especificaciones del MTOP de las diferentes capas que constituyen la estructura del pavimento flexible.

ANEXO 1

CALCULO DE DEMANDA Y PROYECCIÓN DE TRÁFICO.

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
Fecha::	28 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. COLON A AV. JAIME ROLDOS

				CAMIONES							
	LIVIA	ANOS	BUSES	PESA	PESADOS		ESADOS EXTRAPESADOS				
HORA									TOTAL	% DE VOLUMEN	
06h00 07h00									0.00	0.00%	
07h00 08h00									0.00	0.00%	
08h00 09h00									0.00	0.00%	
09h00 10h00	21	7	9						37.00	11.14%	
10h00 11h00	34	7	9						50.00	15.06%	
11h00 12h00	24	10	10	2					46.00	13.86%	
12h00 13h00	32	13	8	4					57.00	17.17%	
13h00 14h00	23	8	9						40.00	12.05%	
14h00 15h00	20	9	8						37.00	11.14%	
15h00 16h00	17	6	8						31.00	9.34%	
16h00 17h00	18	8	8						34.00	10.24%	
17h00 18h00									0.00	0.00%	
18h00 19h00									0.00	0.00%	
19h00 20h00									0.00	0.00%	
20h00 21h00									0.00	0.00%	
21h00 22h00									0.00	0.00%	
22h00 23h00									0.00	0.00%	
23h00 24h00									0.00	0.00%	
24h00 01h00									0.00	0.00%	
01h00 02h00									0.00	0.00%	
02h00 03h00									0.00	0.00%	
03h00 04h00									0.00	0.00%	
04h00 05h00									0.00	0.00%	
05h00 06h00									0.00	0.00%	
TOTAL VEHICULOS	189	68	69	6	0	0	0	0	332.00	100%	

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
Fecha: :	28 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. JAIME ROLDOS A LA AV, COLON

				CAMIONES						
	LIVIANOS		BUSES	PESA	ADOS	EXTRAPESADOS				
HORA						0-0-0			TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	14	5	9						28	9.89%
10h00 11h00	11	8	9						28	9.89%
11h00 12h00	21	6	9	1					37	13.07%
12h00 13h00	36	7	10	3					56	19.79%
13h00 14h00	30	8	9	1					48	16.96%
14h00 15h00	16	5	8						29	10.25%
15h00 16h00	16	6	8						30	10.60%
16h00 17h00	15	4	8						27	9.54%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	159	49	70	5	0	0	0	0	283	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	23 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. COLON A LA AV. JAIME ROLDOS

			CAMIONES							
	LIVIANOS BUSES		PESA	ADOS	EXTRAPESADOS		I			
HORA									TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	20	4	10						34	11.33%
10h00 11h00	34	15	10						59	19.67%
11h00 12h00	17	11	9	1					38	12.67%
12h00 13h00	20	10	9						39	13.00%
13h00 14h00	17	9	9						35	11.67%
14h00 15h00	14	11	8	1					34	11.33%
15h00 16h00	19	5	8						32	10.67%
16h00 17h00	16	5	8						29	9.67%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	157	70	71	2	0	0	0	0	300	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
	29 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. JAIME ROLDOS A LA AV. COLON

		CAMIONES								
	LIVIA	ANOS	BUSES	PESA	ADOS		EXTRAPESADOS		-	
HORA									TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	14	3	9						26	9.85%
10h00 11h00	30	9	10						49	18.56%
11h00 12h00	19	7	7						33	12.50%
12h00 13h00	20	7	9						36	13.64%
13h00 14h00	17	6	9						32	12.12%
14h00 15h00	14	8	8	2					32	12.12%
15h00 16h00	20	7	7						34	12.88%
16h00 17h00	10	5	7						22	8.33%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	144	52	66	2	0	0	0	0	264	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	30 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. COLON A AV. JAIME ROLDOS

				CAMIONES						
	LIVIA	ANOS	BUSES	PESA	ADOS		EXTRAPESADOS			
HORA					•				TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	30	11	9						50	10.59%
10h00 11h00	39	7	9						55	11.65%
11h00 12h00	21	5	8	6					40	8.47%
12h00 13h00	90	28	9	6					133	28.18%
13h00 14h00	25	18	9	2					54	11.44%
14h00 15h00	34	9	8						51	10.81%
15h00 16h00	24	8	8						40	8.47%
16h00 17h00	34	7	8						49	10.38%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	297	93	68	14	0	0	0	0	472	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	30 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. JAIME ROLDOS A LA AV. COLON

						CAMIONES				
_	LIVIA	ANOS	BUSES	PESA	DOS		EXTRAPESADOS	1		
HORA					•				TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	31	7	9						47	13.09%
10h00 11h00	23	10	9	5					47	13.09%
11h00 12h00	15	5	8	1	1				30	8.36%
12h00 13h00	63	12	10	1					86	23.96%
13h00 14h00	23	7	8						38	10.58%
14h00 15h00	21	6	9						36	10.03%
15h00 16h00	17	4	8	2					31	8.64%
16h00 17h00	28	8	8						44	12.26%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	221	59	69	9	1	0	0	0	359	100%

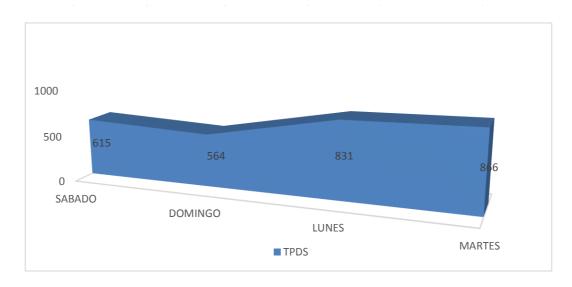
TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	31 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. COLON A AV. JAIME ROLDOS

						CAMIONES				
	LIVIA	ANOS	BUSES	PESA	ADOS		EXTRAPESADOS			
HORA						0			TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	31	12	9						52	10.88%
10h00 11h00	27	9	9	2					47	9.83%
11h00 12h00	30	18	9	5					62	12.97%
12h00 13h00	65	19	9	1	1				95	19.87%
13h00 14h00	41	15	9	1	1				67	14.02%
14h00 15h00	24	15	8						47	9.83%
15h00 16h00	31	17	8	1	1				58	12.13%
16h00 17h00	31	11	8						50	10.46%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	280	116	69	10	3	0	0	0	478	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	31 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. JAIME ROLDOS A LA AV. COLON

						CAMIONES				
	LIVIA	ANOS	BUSES	PESA	ADOS		EXTRAPESADOS			
HORA									TOTAL	% DE VOLUMEN
06h00 07h00									0	0.00%
07h00 08h00									0	0.00%
08h00 09h00									0	0.00%
09h00 10h00	32	10	9						51	13.14%
10h00 11h00	21	9	9	2					41	10.57%
11h00 12h00	24	12	9	3					48	12.37%
12h00 13h00	53	20	10	4					87	22.42%
13h00 14h00	28	5	8	2					43	11.08%
14h00 15h00	26	8	9						43	11.08%
15h00 16h00	16	8	8	5					37	9.54%
16h00 17h00	24	6	8						38	9.79%
17h00 18h00									0	0.00%
18h00 19h00									0	0.00%
19h00 20h00									0	0.00%
20h00 21h00									0	0.00%
21h00 22h00									0	0.00%
22h00 23h00									0	0.00%
23h00 24h00									0	0.00%
24h00 01h00									0	0.00%
01h00 02h00									0	0.00%
02h00 03h00									0	0.00%
03h00 04h00									0	0.00%
04h00 05h00									0	0.00%
05h00 06h00									0	0.00%
TOTAL VEHICULOS	224	78	70	16	0	0	0	0	388	100%

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	31 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. COLON A LA AV. JAIME ROLDOS


							CAMION	ES		
		LIVIANO		BUSES	PESADOS			EXTRAPESADOS		
FECHA	DIA DE LA SEMANA									TOTAL
28/05/2016	SABADO	189	68	69	6	0	0	0	0	332
29/05/2016	DOMINGO	157	70	71	2	0	0	0	0	300
30/05/2016	LUNES	297	93	68	14	0	0	0	0	472
31/05/2016	MARTES	280	116	69	10	3	0	0	0	478
	TOTAL	923	347	277	32	3	0	0	0	1582
	TPDS	256	94	69	10	1	0	0	0	430
	%TPDS	60%	22%	16%	2%	0%	0%	0%	0%	100%
81% 16%						3%			,	

TEMA:	DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLON HASTA LA AV. JAIME ROLDOS AGUILERA EN EL CANTÓN MILAGRO
FECHA:	31 DE MAYO DEL 2016
ESTACIÓN:	#1
SENTIDO:	AV. JAIME ROLDOS A LA AV COLON

					CAMIONES					
		LIVIANO		BUSES	PESADOS]		
FECHA	DIA DE LA SEMANA	Carro								TOTAL
28/05/2016	SABADO	159	49	70	5	0	0	0	0	283
29/05/2016	DOMINGO	144	52	66	2	0	0	0	0	264
30/05/2016	LUNES	221	59	69	9	1	0	0	0	359
31/05/2016	MARTES	224	78	70	16	0	0	0	0	388
	TOTAL	748	238	275	32	1	0	0	0	1294
	TPDS	202	63	69	10	0	0	0	0	345
	%TPDS	59%	18%	20%	3%	0%	0%	0%	0%	100%
		779	%	20%			3%			

CONDENSADO TPDS

		VEHICULOS	LIVIANOS	BUSES	CAMIONES					
		AUTO	CAMIONETA	BUSES	PESADOS					
FECHA	DIA DE LA SEMANA									TOTAL
					C2P	C3	C2-S1	C2-S2	C3-S2	
28/05/2016	SABADO	348	117	139	11	0	0	0	0	615
29/05/2016	DOMINGO	301	122	137	4	0	0	0	0	564
30/05/2016	LUNES	518	152	137	23	1	0	0	0	831
31/05/2016	MARTES	504	194	139	26	3	0	0	0	866
	TOTAL	1671	585	552	64	4	0	0	0	2876
	TPDS	458	158	138	20	1	0	0	0	775
	%TPDS	59.10%	20.39%	17.81%	2.58%	0.13%	0.00%	0.00%	0.00%	100%
		79.48%		17.81%	2.71%		•	•		

			FACCTOR DIARIO
FECHA	DIA	CONTEO DIARIO (TDd)	TPDS/TDd
28/05/2016	SABADO	615	1.26
29/05/2016	DOMINGO	564	1.37
30/05/2016	LUNES	831	0.93
31/05/2016	MARTES	866	0.89
	TOTAL	2876	1.1125
	T.P.D.S.	775	

_
-
1.07
.132
.085
.093
.012
.034
.982
.974
.923
.931
.953
.878

CALCULO DE TPDA

TPDA(existente) = TPDS(FM)(Fd)

TPDA EXISTENTE= 873

T.P.D.S.

TIPO DE VEHICULO	NUMERO		%
LIVIANOS		616	79.48%
AUTOBUSES		138	17.81%
CAMIONES		21	2.71%
TOTAL		775	100%

T asig.

TIPO DE VEHICULO	NUMERO		%
LIVIANOS		868	79.48%
AUTOBUSES		194	17.81%
CAMIONES		30	2.71%
TOTAL		1092	

TASAS DE			
CRECIMIENT			
0	LIVIANOS	BUSES	CAMIONES
2015-2020	3.75	1.99	2.24
2020-2025	3.37	1.8	2.02
2025-2030	3.06	1.63	1.84

								TIPO	DE VE	HICULO	1							
AÑO	n	CREC.	AUTOMOVIL	CREC.	CAMIONETA	CREC.	BUS	CREC.	C2P	CREC.	C3	CREC.	C2-S1	CREC.	C2-S2	CREC.	C3-S2	TOTAL
2016		3.75	645	3.75	223	1.99	194	2.24	28	2.24	1	2.24	0	2.24	0	2.24	0	1092
2017	1	3.75	670	3.75	231	1.99	198	2.24	29	2.24	1	2.24	0	2.24	0	2.24	0	1129
2018	2	3.75	695	3.75	240	1.99	202	2.24	29	2.24	1	2.24	0	2.24	0	2.24	0	1167
2019	3	3.75	721	3.75	249	1.99	206	2.24	30	2.24	2	2.24	0	2.24	0	2.24	0	1208
2020	4	3.75	748	3.75	258	1.99	210	2.24	31	2.24	2	2.24	0	2.24	0	2.24	0	1249
2021	5	3.37	762	3.37	263	1.8	213	2.02	31	2.02	2	2.02	0	2.02	0	2.02	0	1271
2022	6	3.37	787	3.37	272	1.8	216	2.02	32	2.02	2	2.02	0	2.02	0	2.02	0	1309
2023	7	3.37	814	3.37	281	1.8	220	2.02	32	2.02	2	2.02	0	2.02	0	2.02	0	1349
2024	8	3.37	841	3.37	290	1.8	224	2.02	33	2.02	2	2.02	0	2.02	0	2.02	0	1390
2025	9	3.37	870	3.37	300	1.8	228	2.02	34	2.02	2	2.02	0	2.02	0	2.02	0	1434
2026	10	3.06	872	3.06	301	1.63	229	1.84	34	1.84	2	1.84	0	1.84	0	1.84	0	1438
2027	11	3.06	899	3.06	310	1.63	232	1.84	34	1.84	2	1.84	0	1.84	0	1.84	0	1477
2028	12	3.06	927	3.06	320	1.63	236	1.84	35	1.84	2	1.84	0	1.84	0	1.84	0	1520
2029	13	3.06	955	3.06	329	1.63	240	1.84	36	1.84	2	1.84	0	1.84	0	1.84	0	1562
2030	14	3.06	984	3.06	340	1.63	244	1.84	36	1.84	2	1.84	0	1.84	0	1.84	0	1606
2031	15	3.06	1014	3.06	350	1.63	248	1.84	37	1.84	2	1.84	0	1.84	0	1.84	0	1651
		Σ	13204	Σ	4557	Σ	3540	Σ	521	Σ	29	Σ	0	Σ	0	Σ	0	

Lx/Ton	Lx/Kips	L18	L2x	L2s	Pt	SN	G	Вх	G/BX	B18	G/B18	WX/W18	LEF
1	2,2	18	1	1	2	5	-0,0889	0,4003	-0,2222	0,5001	-0,1779	4584,0173	0,0002
2	4,4	18	1	1	2	5	-0,0889	0,4017	-0,2214	0,5001	-0,1779	374,5625	0,0027
3	6,6	18	1	1	2	5	-0,0889	0,4052	-0,2195	0,5001	-0,1779	73,1961	0,0137
4	8,8	18	1	1	2	5	-0,0889	0,4118	-0,2160	0,5001	-0,1779	21,8339	0,0458
7	15,4	18	1	1	2	5	-0,0889	0,4622	-0,1924	0,5001	-0,1779	1,9569	0,5110
11	24,2	18	1	1	2	5	-0,0889	0,6491	-0,1370	0,5001	-0,1779	0,2840	3,5208
18	39,6	18	2	1	2	5	-0,0889	0,5340	-0,1665	0,5001	-0,1779	0,4837	2,0675
20	44	18	2	1	2	5	-0,0889	0,5855	-0,1519	0,5001	-0,1779	0,3090	3,2357
24	52,8	18	3	1	2	5	-0,0889	0,4934	-0,1803	0,5001	-0,1779	0,6643	1,5052

	CLASE DE	EJE	EJE	EJE	Factor Comién
	VEHICULOS	DELANTERO (Ton)	MEDIANERO (Ton)	(Ton)	Factor Camión
	AUTOMOVILES			1	0,00044
	CAMIONETAS	1		2	0,00289
	BUS	7		18	2,57855
	C2P	3		7	0,52468
3A	СЗ	7		20	3,74677
251	C2-S1	7	11	11	7,55253
252	C2-S2	7	11	20	7,26752
352	C3-S2	7	20	20	6,98251

CLASE DE VEHICULOS	Trafico Asignado	DD	LD	FACTOR CAMION FC	Factor de Crecimiento	ESAL'S
AUTOMOVILES	645	50	100	0,000436299	19,678	1011,15
CAMIONETAS	223	50	100	0,002887931	19,678	2308,92
BUS	194	50	100	2,578546504	17,203	1574135,27
C2P	28	50	100	0,524682885	17,609	47516,60
C3	1	50	100	3,746767084	17,609	16965,83
C2-S1	0	50	100	7,552534431	17,609	0,00
C2-S2	0	50	100	7,267523826	17,609	0,00
C3-S2	0	50	100	6,982513221	17,609	0,00
						1.641.937,77

Diseño de Pavimento Flexible

DATOS:					
N _O . AÑOS :	15				
EJES ACUMULADOS 8,2 ton :	1.665.481,44	ĺ			
EJES ACUM. AJUSTADOS 8,2 ton :	1.665.481,44	No. AÑOS :	15		
CONFIABILIDAD (%):	80				
DESVIACIÓN NORMAL ESTANDAR (Zr) :	-0,841				
ERROR NORMAL COMBINADO (So):	0,49				
CBR SUBRASANTE:	1,22				
MÓDULO RESILIENTE HOR. ASFALTICO (p.s	400.000	a 1:	0,42	m 1 :	х
MÓDULO RESILIENTE DE BASE GRANULAR	27.000	a 2:	0,14	m 2 :	0,80
MÓDULO RESILIENTE SUBBASE (p.s.i.) :	15.000	а3:	0,11	m 3:	0,80
MÓDULO RESILIENTE MEJORAMIENTO (p.s	13.000	a 4:	0,095	m 4:	0,80
MÓDULO RESILIENTE SUBRASANTE (p.s.i.)	1.830				
PERDIDA TOTAL DE PSI:	2,2				

CÁLCULO DE LOS NUMEROS ESTRUCTURALES REQUERIDOS

(SN) NÚMERO ESTRUCT REQUERIDO SUBI 5,37 LOG (EJES ACUMULADOS): 6,22 ECUACIÓN DE COMPROBACIÓN : 6,22 SN1 NÚMERO ESTRUCTURAL REQUERIDO (BASE GRANULAR) NÚMERO ESTRUCT REQUERIDO : 2,14 LOG (EJES ACUMULADOS): 6,22 ECUACIÓN DE COMPROBACIÓN : 6,22 SN2 NÚMERO ESTRUCTURAL REQUERIDO (SUB BASE) NÚMERO ESTRUCT REQUERIDO : 2,65 LOG (EJES ACUMULADOS): 6,22 ECUACIÓN DE COMPROBACION : 6,22

SN3 NÚMERO ESTRUCTURAL REQUERIDO (MEJORAMIENTO)
NÚMERO ESTRUCT REQUERIDO: 2,79
LOG (EJES ACUMULADOS): 6,22
ECUACIÓN DE COMPROBACIÓN: 6,22

(corregido	≥	(requerido
5,40	∧l	5,37

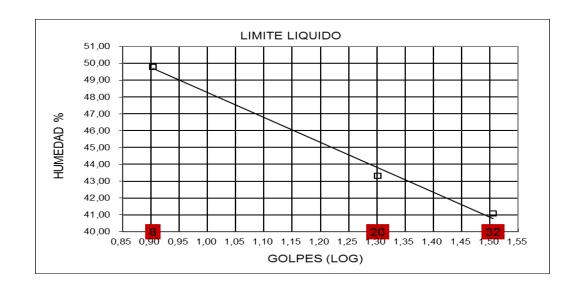
DETERMINACIÓN DE ESPESORES DE LA ESTRUCTURA:

	Espesor	Núm. Estr.	Espesor	Espesor	Espesor
CAPAS DEL PAVIMENTO	Núm. Estr.	corregido	cálculado	adoptado	adoptado
			(plg)	(plg)	(cm)
_	D1* :		5,10	3,00	7,5
CAPA HORMIGON ASFÁLTICO :					
	SN1*:	1,260			
	D2* :		12,87	6,00	15,0
BASE GRANULAR CLASE 1:					
	SN2*:	0,648			
	D3* :		10,02	12,00	30,0
SUBBASE CLASE 3 MATERIAL EXISTENTE					
	SN3*:	1,06			
	D4* :		31,59	32,00	80,0
MEJORAMIENTO MATERIAL EXISTENTE					
	SN4* :	2,43			
TOTAL		5,40		53,0	132,5

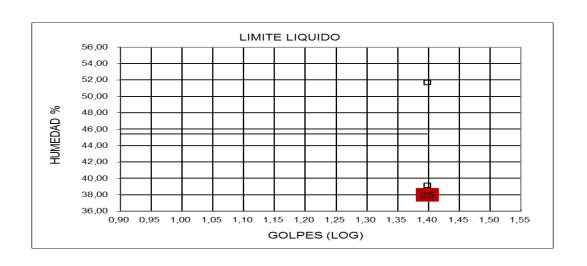
ANEXO 2

Resultados de Ensayos de Laboratorio

	Proyecto:	Diseí	ño de	Pavi	ment	o Fle	xible	en la	Av. A	lfred	lo Adı	ım					Fecha:	201	6-06-20	
		entre	e Av. (Colór	ı y Av	. Jair	ne Ro	ldos.												
		Sub-Rasante																		
No.	TIPO DE	GRANULOMETRIA QUE PASA LIMITES PROC															OR	C.B.R	Clasific	ación
	MUESTRA	3"												M.D	Н.Ор	95%	AASHTO	SUCS		
1	Sub Rasante 0+550 Der (0,50)	100	100	100	100	100	100	100	100	100	100	100	93,5	42,36	14,64	1,76	18,58	1,12	A-7-6	ML
2	Sub Rasante 0+550 Der (1,00)	100	100	100	100	100	100	100	100	100	100	100	98,9	40,40	16,35				A-7-6	ML
3	Sub Rasante 1+000 Izq (0,50)	100	100	100	100	100	100	100	100	100	100	100	95,1	NP	NP	1,75	17,30	3,15	A-4	ML
4	Sub Rasante 1+000 Izq (1,00)	100	100	100	100	100	100	100	100	100	100	100	98,9	63,93	26,82				A-7-5	MH1
		-			•		-	-	•							•	•			


	Proyecto:	Dise	ño de	Pavi	ment	o Fle	exible	en la	Av. A	lfred	o Ad	um					Fecha	20	16-06-20	
		entr	entre Av. Colón y Av. Jaime Roldos. Base y Sub Base																	
		Base																		
No.	TIPO DE		GRANULOMETRIA QUE PASA LIMITES PROCT															C.B.R	Clasifica	cíon
	MUESTRA	3"	2 1/2	2"	1 1/2	1"	3/4"	1/2"	3/8"	4	10	40	200	Liquido	I.P	M.D	Н.Ор	%	AASHTO	SUCS
3	Sub base 0+550 Der	100	100	100	98	92	88	81	74	61	53	40	27,6	NP	0	-	-	-	A-2-4	GM
4	Base 0+550 Der	100	77	77	72	66	60	49	43	32	26	17	9,7	NP	0	-	-	-	A-1-a	GM
6	Sub Base 1+000 Izq	93	91	84	73	64	60	53	48	38	32	14	4	NP	0	2,34	7	60	A-1-a	GW/GP
7	Base 1+000 Izq	98	98	96	93	86	81	73	65	52	43	23	8,8	NP	0	2,357	6,5	63,48	A-1-a	GM
	•	•	•		•		•	•	•					•		•	•	•		

		R	EGIS	TRO	DE SONDE	OS E	N SUE	LOS			
PROYE Roldos	CTO: Dise	ño de Pa	vimento	Flexible	e en la Av. Alfo	nso Ad	um entre l	a Av. C	Colón y	Av. Jai	me
							Ensayad	-			
SONDE	O Nro:	1	UBICA	CION:	0+550	DER.	Torres C				nge
FECHA:	<u>.</u>	08/0	 6/2016				Maita V	vanco	Galo Ro	berto	
PROFUNDIDAD (m)	LONGITUD TRAMO (m)		TOLÓGICA	DE	SCRIPCION	MUESTRAS	Nro. GOLPES	ATTEI	ES DE RBERG	нимерар (%)	CLASIFICACION AASHTO
PRO	77 12	Ö	717			N		LL (%)	IP (%)	ПH	CU
0,20		g gg gg	_ - 전 - 전 - 전		BASE	1		NP	0	2	A-1-a
0,30	1,5		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	S	SUB BASE	1		NP	0	2	A-2-4
0,50				SU	B RASANTE	1	25	42,3	14,6	29,93	A-7-6
0,50				SU	B RASANTE	1	25	45,4	16,3	35,48	A-7-6
OBSER	VACIONES	3:									


DDOV .	Diseño de Pa	wi mant	a Flavibl	0 0n	Lo Av	Dec free di de	- al -	0, 20
	Adum entre A							0, 20
Muestra		AV. COI	oli y Av.	Jaille	KUI UUS	Abscisa:)
			Encayado	nor : Ta	arraa Eat	efania/Mai		-
recha:	2016/06/10			нм.	SECO	DE CAPS		RESULTADO
1 CON'	TENIDO DE AG	UA		,00	100,00			KESULIADO
				,00	100,00		0,00	0,00
2 LIM	. LIQUIDO		LA MUEST	RA NO	ES PLAST	'ICA		
3 LIMI	ITE PLASTICO		LA MUEST	RA NO	ES PLAST	ICA		
4 GRAN	NULOMETRIA					5 CLASIE	FICACION	
PESO IN=	(101 00	/II / C \	S			CD 7117 -	68	્ર
	6.181,00 CIAL DE CALCUL		-	- 0.0		GRAVA= ARENA=	22	0
ILOO INI			0.101	, , , ,		FINOS=	10	90
TAMIZ	W. RT.	% R. A.	90	PASA				
3"	0	0,0	-	100		TT =	0,00	96
2 1/2"		23,2		77		Tb =	0,00	96
2"		23,2		77		IP =	0,00	%
1 1/2"	1.728	28,0		72				
1"	2. 126	34,4		66		CLASIFIC	CACION:	
3/4"	2. 464	/		60		SUCS =	GM	
1/2"	3. 151	51,0		49		AASHTO=	A-1-a	
3/8"	3. 533	57 , 2		43		IG(86)=	0	
No. 4	4. 230	68 , 4	3	1, 6		IG(45)=	0	
Pasa:	1. 951	31,6						
No. 10	35, 8	5,2	2	6, 4 C	OLOR:	GRI S		
No. 40	101, 8	14,7	1	6, 8				
No. 200	151, 0	21,9		9, 7				
Pasa:	(67,00)	(9,7)						
total	6.181,00	218						

							0.40
			Flexible en				0, 40
		Av. Cold	on y Av. Jain	ne Roldos			
	Sub- Base			_	Abscisa:		
FECHA:	2016/06/10		Ensayado por				
1 2027			PESO HM.	SECO	DE CAPS		RESULTADO
1 CON	TENIDO DE AG	UA	100,00 100,00	100,00	22 , 95	0,00	0,00
			100,00	100,00	20,15	0,00	0,00
2 LIM	. LIQUIDO						
			LA MUESTRA	NO ES PLAST	TICA		
3 - T.TM1	ITE PLASTICO		LA MUESTRA	NO ES PLAS	rtca		
J. 1111	111 111101100		III HODOTKII I	15 111101	1011		
4 GRA1	NULOMETRIA				5 CLASIE	FICACION	
DEGO TN	4 516 00	(11 / 0)	2	-	CD 3113	2.0	0
PESO IN=	4.516,00 CIAL DE CALCUI		S 4.516,00		GRAVA= ARENA=	39 33	90
ILOO INI	CIME DE CARCOI		1.010,00		FINOS=	28	
TAMIZ	W. RT.	% R. A.	% PASA				
3"	0	0,0	100		TT =	0,00	90
2 1/2"	0	0,0	100		LP =	0,00	8
2"	0	0,0	100		IP =	0,00	ે
1 1/2"	90	2,0	98				
1"	362	8,0	92		CLASIFIC	CACION:	
3/4"	529	11,7	88		SUCS =	GM	
1/2"	852	18,9	81		AASHTO=	A-2-4	
3/8"	1. 153	25,5	74		IG(86)=	0	
No. 4	1. 783	39,5	60, 5		IG(45)=	0	
Pasa:	2. 733	60,5					
No. 10	32, 2	8,0	52, 5	COLOR:	GRI S		
No. 40	82, 2	20,4	40, 1				
No. 200	132, 6	32,9	27, 6				
Pasa:	(111, 40)	(27,6)					
total	4.516,00	244					

PROY. :	Diseño de Pa	vimento	Flexible en	la Av.	Profundidad	l:	0, 50
	Adum entre A	Av. Colon	y Av. Jaime	Rol dos	Cal i cat a:		
Muestra:	Sub- Rasant e				Abscisa:		0+550 Der
FECHA:	2016/06/10		Ensayado por:	Torres E	st ef ani a/	Maita Ga	ıl o
		GOLPES	PESO HM.	SECO	DE CAPS	W %	RESULTADO
1 CON	TENI DO DE A	GUA	109,90	90,96	27,95	30,06	
			112, 87	93, 16	27, 03	29, 80	29, 93
				,		,	,
2 LI M	L LI QUI DO	32	36, 05	31, 02	18, 78	41,09	
		20	37, 75	32, 83	21, 47	43, 31	
		8	32, 84	28, 10	18, 58	49, 79	
		8	32, 84	28, 10	18, 58	49, 79	42, 36
						•	
3 LI M	TE PLASTIC	0	25,34	23,74	17,97	27,73	
			30, 95	28, 91	21, 50	27, 53	27, 72
			25, 93	24, 32	18, 55	27, 90	
4 GRA	NULOMETRI A				5 CLASI	FI CACI C)N
PESO IN=	75,70	(H/S)	Н		GRAVA=	0	%
PESO INI	CIAL DE CALC	ULO:	58, 26		ARENA=	7	8
TAMIZ	PESO R.	% R.A.	% PASA		FI NOS=	93	용
3"	0,00	0,00	100				
2 1/2"	0,00	0,00	100		LL =	42, 36	%
2"	0,00	0,00	100		LP =	27, 72	%
1 1/2"	0,00	0,00	100		IP =	14, 64	%
1"	0, 00	0,00	100				
3/4"	0, 00	0,00	100				
1/2"	0, 00	0,00	100		CLASI FI	CACI ON:	
3/8"	0, 00	0,00	100		SUCS =	ML	
No. 4	0, 00	0,00	100		AASHTO=	A- 7- 6	
Pasa	58, 26	100,00			I G(86) =	16	
No. 10	0, 00	0,00	100		IG(45) =	10	
No. 40	0, 00	0,00	100				
No. 200	3, 80	6 , 5	93, 5				
TOTAL	58,26	58, 26			CAFÉ OB	SCURO	

PROY. :	Diseño de Pa	vimento F	lexible en l	a Av.	Profundidad	l:	1, 00
	Adum entre A	Av. Colon	y Av. Jaime	Rol dos	Cal i cat a:		
Muestra:	Sub Rasante				Abscisa:		0+550 Der
FECHA:	2016/06/10		Ensayado por:	Torres E	st ef ani a/	Maita Ga	al o
		GOLPES	PESO HM.	SECO	DE CAPS	w %	RESULTADO
1 CON	TENI DO DE A	GUA	148,63	117,28	28,37	35,26	
			164, 12	128, 48	28, 67	35, 71	35, 48
2 LI M	LI QUI DO	1	33, 33	28, 42	18, 92	51,68	
		1	33, 51	29, 34	18, 68	39, 12	
		25	33, 33	28, 42	18, 92	51, 68	
		25	33, 51	29, 34	18, 68	39, 12	45, 40
					'	,	
3 LI M	TE PLASTIC	0	35,40	33,39	26,43	28,88	
			29, 45	27, 75	21, 87	28, 91	29, 05
			26, 79	24, 97	18, 77	29, 35	
4 GRAI	NULOMETRI A				5 CLASI	FI CACI C	DN
PESO IN=	116,02	(H/S)	Н		GRAVA=	0	ଚ
PESO INI	CIAL DE CALC	ULO:	85, 63		ARENA=	1	%
TAMIZ	PESO R.	% R.A.	% PASA		FI NOS=	99	%
3"	0,00	0,00	100				
2 1/2"	0,00	0,00	100		LL =	45, 40	%
2"	0,00	0,00	100		LP =	29, 05	%
1 1/2"	0,00	0,00	100		IP =	16, 35	%
1"	0, 00	0,00	100				
3/4"	0, 00	0,00	100				
1/2"	0, 00	0,00	100		CLASI FI	CACI ON:	
3/8"	0, 00	0,00	100		SUCS =	ML	
No. 4	0, 00	0,00	100		AASHTO=	A- 7- 6	
Pasa	85, 63	100,00			IG(86) =	20	
No. 10	0, 00	0,00	100		IG(45) =	12	
No. 40	0, 00	0,00	100				
No. 200	0, 90	1,1	98, 9				
TOTAL	85 , 63	85, 63			CAFÉ OBS	SCURO	

ENSAYO DE COMPACTACION

PROYEC: Diseño de Pavimento Flexible en la Av. Alfredo Adum

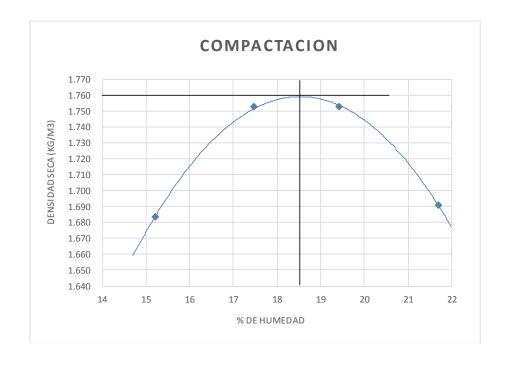
entre Av. Colón y Av Jaime Roldos.

Sub Rasant e(0, 50) Abscisa: 0+550 Der. USO:

Ensayado por: FECHA: 2016/06/12

Torres Estefania/Maita Galo

NORMA ENSAYO:	T-180 "A"	DATOS DEL MOLDE	9
GOLPES/CAPA:	25	ALTURA :	11,64 cm.
No. DE CAPAS:	5,00	DIAMETRO:	10,16 cm.
PESO MARTILLO:	10,00 Lbr	VOLUMEN :	944 cm3
ALT. DE CAIDA:	45,72 cm.	PESO :	4.203 gr.
DATOS PARA LA	CURVA:		
	_		


PUNTO No.:	1	2	3	4
Peso comp.:	5.943	6.046	6.148	6.073
Peso suelo:	1.830	1.943	1.975	1.942
Dens. Hum :	1.939	2.059	2.093	2.058

CONTENI	DOS	DE	HUMEDAD:
---------	-----	----	----------

W. hum.:	95 , 10	107,37	132,51	100,41	117,52	121,97	122,48	107,92
W. seco:	85 , 79	96,91	116,98	88,91	103,06	106,65	105,62	93 , 26
W. caps:	24,20	28,53	27 , 99	23,15	28,18	28,26	28,11	25 , 55
₩ (%)	15,12	15,30	17,45	17,49	19,31	19,54	21,75	21,65
pr omedi d		15, 21		17, 47		19, 43		21, 70
						•		-

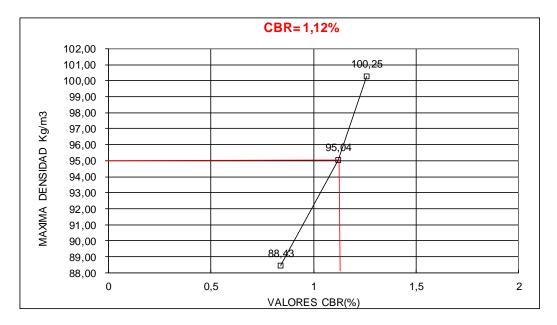
Dens. Seca: 1.683 1.753 1.752 1.691

RESULTADOS: DENSI DAD SECA MAXI MA = 1.760 Kg/m3 % CONT. DE AGUA OPTI MO = 18,58

ENSAYO CBR

			ENSAT	o obit			
PROYECTO:	Y Av Jai	pavimento Fl me Roldos	exible e	ENSAYADO POR	: Torres Es	st/Maita Ga	olon HOJA 1
Abscisa:	0+550 DE	R		Uso:	Sub-Rasa	ınt e	
FECHA:	2016-06-	16		PROFUND(m):	0,50		
D.4.T.0.0. D.5.1	1101 050			_		_	
DATOS DEL	MOLDEO		DE CAPAS ARTILLO =			Alza =	5,00
MOLDE No.:		6		12		Α	
Altura =	17,76	cm.	17,76	cm.	17,76	cm.	
Diámetro =	15,19	cm.	15,19	cm.	14,58	cm.	
Golpes/capa		61		27		11	
Peso comp.:		11.875		11.873		10.567	
Peso molde:		7.044		7.272		6.637	
Peso suelo:		4.831		4.601		3.930	
Volumen :		2.312		2.312		2.130	
Dens. Hum :		2.089		1.990		1.845	
CONTENI DOS	DE HUMED	AD DE MOLDEO:	ı				
COITI EIII DOC	DE MONED	6		12		A	
W. humedo :	148,21	148,21	137,43	137,43	144,01	144,01	
W. seco :	128,84	128,84	119,99	119,99	125,44	125,44	
W. capsula:	23,60	23,60	28,00	28,00	25,23	25,23	
w (%) :	18,41	18,41	18,96	18,96	18,53	18,53	
w(%) prom.:		18,41		18,96		18,53	
Dens. Seca	•	1.764		1.673		1.556	
Della. Octa	•	1.704		1.073		1. 330	
CONTENI DOS	DE HUMED	AD LUEGO DE I	_A SATURA	ACI ON:			
W. humedo :	101,33	101,33	115,64	115,64	114,08	114,08	
W. seco:		,	93,82	93,82		•	
W. capsula:	28,68	28,68	25,24	25,24			
w. capsara: w (%) :	- I	29,80	31,82	31,82			
w(%) prom.:		29,80	J1,02	31,82		34,81	
	•	•		. , .	•	- , -	
PORCENTAJE	DE AGUA	6, 00		12,00		A	
_		12.032		11.940		10.893	
Peso satr.:		157		67		326	
						220	
Agua abs. :		3,25		1,46		8,30	
Agua abs. : % agua ab.:		3,25		1,46		8,30	
Peso satr.: Agua abs.: % aqua ab.: PORCENTAJE DENSI DAD M	DE COMPA	3,25	н	, .	/A:	8,30	
Agua abs. : % agua ab.: PORCENTAJE	DE COMPA	3,25 CTACI ON:	Н	, .	<u>//A:</u>	_	
Agua abs. : % agua ab.: PORCENTAJE	DE COMPA	3,25 CTACI ON:	н	, .	IA:	_	

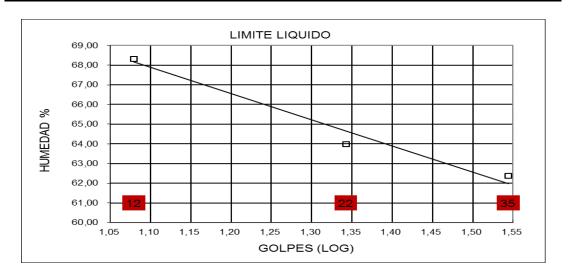
ABSCISA:	prisent pa y Av. Jair 0+550 DER 2016-06-16	me Roldos		ENSAYADO POR: MUESTRA No. PROFUND (m):	Torres Est Sub-Rasan	
CDONLARS EN					·	ноја 2
SPONJAMIENT	i O:	6		12		A
Tiempo (dias)	dial E -3 "	%	dial E -3 "	%	dial E -3 "	%
)	0	0, 00	0,0	0, 00	0	0, 00
	242,0	4, 82	334,0	6, 65	324,0	6, 45
	275,0	5, 47	356,0	7,09	341,0	6, 79
L 2 3	298,0 301,0	5,93 5,99	368, 0 374, 0	7, 33 7, 44	347, 0 352, 0	6, 91 7, 01
MOLDE No.:		6,00	CONSTANTE	12,00		0,7000 A
penetracion (pulgadas)	dial KN	presion Ib/plg2	dial KN	presion Ib/plg2	dial KN	presion lb/plg2
0.000	0.00	0.00	0.00	0.00	0.00	0.00
0,000 0,025	0,00 5,00	0,00 3,50	0,00 4,50	0, 00 3, 15	0,00 4,00	0,00 2,80
0,023	11,00	7, 70	9,50	6, 65	6,00	4, 20
0,030	14,00	9,80	12,00	8, 40	9,00	6,30
0,100	18,00	12, 60	16,00	11, 20	12,00	8, 40
0,150	25,00	17, 50	18,00	12,60	14,00	9, 80
0,200	32,00	22, 40	21,00	14,70	16,00	11, 20
0,300	38,00	26,60	24,00	16,80	18,00	12,60
0,400	43,00	30, 10	28,00	19,60	19,50	13, 65
ALORES CORF	REGI DOS:					
	presion		valor		% de	
	lb/plg2		CBR		compact.	
	10 00		1, 26		100 25	
	12,60 11,20		1, 26		100,25 95,04	
	8,40		0,84		95,04 88,43	
	0,40		0, 04		00,43	


Diseño pavimento Flexible en la Av. Alfredo Adum entre Av Colon Y av. Jaime Roldos ENSAYADO POR::/Maita Ga PROYECTO:

ENSAYADO POR::/Maita Ga MUESTRA No. Sub-Rasante

LOCALIZ.: PROFUND (m): FECHA: 2016-06-16 0,50

ноја 3


PROYE Jaime F		seno de Pa	ivimento	Flexible	e en la Av. Alfr	edo Adı	ım desde	la Av. (Solon n	asta la	Av.	
SONDEO Nro: 2 UBICA CIO					ON: 1+000 IZQ			Ensayado por: Torres Castillo Estefania Sorange Maita Vivanco Galo Roberto				
ECHA	:	08/0	06/2016			1		ı				
PROFUNDIDAD (m)	LONGITUD TRAMO (m)	COLUMNA	LITOLÓGICA	DE	SCRIPCION	MUESTRAS	Nro. GOLPES		ES DE RBERG IP (%)	НИМЕDAD (%)	CLASIFICACION AASHTO	
0,10		00 0			BASE	1		0	0	2,6	A-1-a	
0,50	1,6		°0°,00°0 2°0000	S	SUB BASE	1		0	0	2,0	A-1-a	
0,50				SU	B RASANTE	1		NP	0	34,61	A-4	
0,50				SU	B RASANTE	1	25	63,93	26,82	33,32	A-7-5	

PROY. :	Diseño de Pa	viment	o Flexible e	n la Av.	Profundida	ıd:	0, 10
OBRA :	Adum entre A	v. Col	on y Av. Jai	me Roldos	Cal i cat a:		•
Muestra					Abscisa:		zq
FECHA :	2016/06/10	1	Ensayado por:	Torres Est	efania/Mai	ta Gal	0
			PESO HM.	SECO	DE CAPS		RESULTADO
1 CONT	ENIDO DE AGU	JA	100,00		22,95		
			100,00	100,00	28,15	0,00	0,00
2 LIM.	LIQUIDO						
			LA MUESTRA 1	NO ES PLAST	'ICA		
3 LIMI	TE PLASTICO		LA MUESTRA 1	NO ES PLAST	ICA		
4 GRAN	ULOMETRIA				5 CLASIE	CICACION	
PESO IN=	41.909,00	(H/S)	S		GRAVA=	48	ફ
	IAL DE CALCUL		-		ARENA=	43	%
					FINOS=	9	%
TAMIZ		% R. A.					
3"	947	2,3	98		TT =	•	90
2 1/2"		2,3	98		Tb =	0,00	90
2"	1.721	•	96		IP =	0,00	90
1 1/2"	2.930	•	93				
1"	5. 992	14,3	86		CLASIFIC	CACION:	
3/4"	8. 099	19,3	81		SUCS =	GM	
1/2"	11. 469	27,4	73		AASHTO=	A-1-a	
3/8"	14. 536	34,7	65		IG(86)=	0	
No. 4	20. 084	47,9	52, 1		IG(45)=	0	
Pasa:	21. 825	52,1					
No. 10	59, 2	9,6	42, 5	COLOR:	GRI S		
No. 40	183, 8	29,8	22, 3				
No. 200	267, 0	43,3	8, 8				
Pasa:	(54,00)	(8,8)					
total	41.909,00	321					

PROY .	Diseño de Pa	vi ment	n Flavible e	n la Δv	Profundida	nd:	0, 60
	Adum entre A						0, 00
	Sub- Base		on y Av. our	ne nor dos	Abscisa:		7.0
	2016/06/10	ı	Ensayado por:	Torres Est			-
I DOINI .	2010/00/10	<u> </u>	PESO HM.				
1 CON	TENIDO DE AGU	JA	100,00	100,00			RECOLITIO
			100,00	100,00	28,15	0,00	0,00
2 LIM	. LIQUIDO						
			LA MUESTRA I	NO ES PLAST	TICA		
3 LIM	ITE PLASTICO		LA MUESTRA I	NO ES PLAST	TICA		
4 GRA	NULOMETRIA				5 CLASIF	CICACION	
PESO IN=	48.623,00	(H/S)	S		GRAVA=	62	્ર
	CIAL DE CALCUL		_		ARENA=	34	용
					FINOS=	4	용
TAMIZ		% R. A.					
3"	3.249	6 , 7	93			0,00	용
2 1/2"		9,2	91		LP =	0,00	용
2"	7.973	•	84		IP =	0,00	용
1 1/2"	13.231		73				
1"	17. 274	•	64		CLASIFIC	CACION:	
3/4"	19. 395	•	60		SUCS =	GW/GP	
1/2"	22. 754	46,8	53		AASHTO=	A-1-a	
3/8"	25. 493	52 , 4	48		IG(86)=	0	
No. 4	30.060	61,8	38, 2		IG(45)=	0	
Pasa:	18. 563	38,2					
No. 10	42, 2	6,4	31, 8	COLOR:	GRI S		
No. 40	159, 2	24,1	14, 1				
No. 200	225, 3	34,1	4, 0				
Pasa:	(26, 70)	(4,0)					
total	48. 623, 00	252					

PROY. : Di	seño de Pa	vimento	Flexible en	la Av.	Profundida	d:	0, 50
Ad	lum entre A	v. Colo	n y Av. Jain	ne Roldos	Cal i cat a:		•
Muestra Su			•		1+000 I	zq	
FECHA : 20	16/ 06/ 10		Ensayado por	Torres Est	efania/Mai	ta Gal	0
			PESO HM.	SECO	DE CAPS	w %	RESULTADO
1 CONTE	NIDO DE AGU	JA	107,94	86,08	22,95	34,63	
			130,63	104,29	28,15	34,59	34,61
2 LIM. 1	LIQUIDO						
			LA MUESTRA	NO ES PLASI	ICA		
3 LIMITE	E PLASTICO		LA MUESTRA	NO ES PLAST	ICA		
4 GRANUI	LOMETRIA				5 CLASIF	ICACION	
PESO IN=	103,50	(H/S)	S	-	GRAVA=	0	Se Se
	AL DE CALCUL		76,89		ARENA=	5	8
					FINOS=	95	90
TAMIZ		% R. A.	% PASA	-			
3"	0	0,0	100			0,00	%
2 1/2"	0	0,0	100		LP =	, , , ,	ଚ
2"	0	0,0	100		IP =	0,00	%
1 1/2"	0	0,0	100				
1"	0	0,0	100		CLASIFIC		
3/4"	0	0,0	100		SUCS =		
1/2"	0	0,0	100		AASHTO=		
3/8"	0	0,0	100		IG(86)=		
No. 4	0	0,0	100, 0		IG(45)=	8	
Pasa:		100,0					
No. 10		0,0	100, 0	COLOR:	GRI S		
No. 40	0, 0	0,0	100, 0				
No. 200	3, 8	4,9	95, 1				
Pasa:	(73, 09)			4			
total	76, 89	76, 89					

PROY. :	Diseño de Pa	vimento F	lexible en l	a Av.	Profundidad	l:	1, 00		
OBRA :	Adum entre A	Av. Colon	v Av. Jaime	Rol dos	Cal i cat a:		·		
	Sub Rasante		•		Abscisa:		1+000 lz		
FECHA:		1	Ensavado por:	:Torres Estefania/Maita Galo					
1201111		GOLPES	PESO HM.	SECO	DE CAPS	w %	RESULTADO		
1 - CON	TENI DO DE A		147,66	117,59	28,02	33,57	RECOETIE		
551	12.4 00 02 7		129, 53	104, 26	27, 84	33, 07	33, 32		
			120, 00	101,20	27,01	00, 01	00,02		
2 LI M	LI QUI DO	35	35, 66	30, 14	21, 29	62,37			
		22	31, 27	26, 42	18, 84	63, 98			
		12	34, 73	29, 30	21, 35	68, 30			
		12	34, 73	29, 30	21, 35	68, 30	63, 93		
			, -						
3 LI M	TE PLASTIC	0	26,40	25,13	21,70	37,03			
			32, 72	30, 93	26, 12	37, 21	37, 10		
			21, 80	20, 41	16, 66	37, 07			
4 GRA	NULOWETRI A				5 CLASI	FI CACI C)N		
PESO IN=	112,11	(H/S)	H		GRAVA=	0	ଖ		
PESO INI	CIAL DE CALC	ULO:	84, 09		ARENA=	1	용		
TAMIZ	PESO R.	% R.A.	% PASA		FI NOS=	99	용		
3"	0,00	0,00	100						
2 1/2"	0,00	0,00	100		LL =	63, 93	%		
2"	0,00	0,00	100		LP =	37, 10	%		
1 1/2"	0,00	0,00	100		IP =	26, 82	%		
1"	0, 00	0,00	100						
3/4"	0, 00	0,00	100						
1/2"	0, 00	0,00	100		CLASI FI				
3/8"	0, 00	0,00	100		SUCS =	MH1			
No. 4	0, 00	0,00	100		AASHTO=				
Pasa	84, 09	100,00			I G(86) =	35			
No. 10	0, 00	0,00	100		I G(45) =	19			
No. 40	0, 00	0,00	100						
No. 200	0, 90	1,1	98, 9						
TOTAL	84,09	84, 09			CAFÉ OBS	SCURO			

ENSAYO DE COMPACTACION

PROYEC: Diseño de Pavimento Flexible en la Av. Alfredo Adum

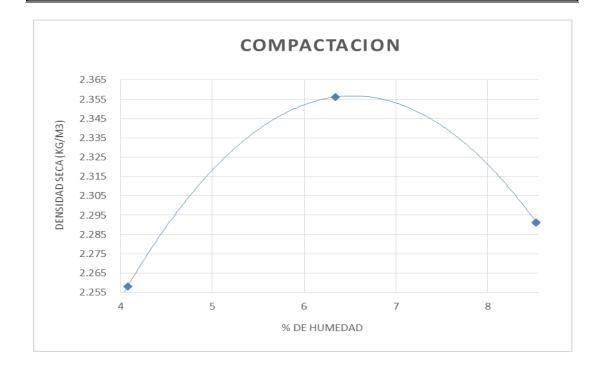
M na:

entre Av. Colón y Av Jaime Roldos. BASE USO: Abscisa: 1+000 | zq

FECHA: 2016/06/12 Ensayado por:

Torres Estefania/Maita Galo

l .				
NORMA ENSAYO:	T-180 "D"	DATOS DEL MOLDE	4	
GOLPES/CAPA:	56	ALTURA :	11,64	cm.
No. DE CAPAS:	5,00	DIAMETRO:	15,24	cm.
PESO MARTILLO:	10,00 Lbr	VOLUMEN :	2.123	cm3
ALT. DE CAIDA:	45,72 cm.	PESO :	6.419	gr.


DATOS PARA LA CURVA:

PUNTO No.:	1	2	5 3	4
Peso comp.:	11.409	11.739	11.699	11.699
Peso suelo:	4.990	5.320	5.280	5.280
Dens. Hum :	2.350	2.506	2.487	2.487

CONTENI DOS DE HUMEDAD:

W. hum.:	143,54	145,95	172,67	155,54	169,33	181,69	169,33	181,69
W. seco:	139,01	141,36	164,08	147,94	158,08	169,75	158,08	169,75
W. caps:	28,00	28,67	28,15	28,44	27 , 58	28,26	27,58	28,26
w (%)	4,08	4,07	6,32	6,36	8,62	8,44	8,62	8,44
pr omedi o)	4, 08		6, 34		8, 53		8, 53
Dens. Se	eca:	2. 258		2.356		2. 291		2. 291

RESULTADOS: DENSI DAD SECA MAXI MA = 2.357 Kg/ m8 CONT. DE AGUA OPTI MO = 6,50 %

ENSAYO DE COMPACTACION

PROYEC: Diseño de Pavimento Flexible en la Av. Alfredo Adum

entre Av. Colón y Av Jaime Roldos.

USO: SUB-BASE Abscisa: 1+000 lzq.

FECHA: 2016/06/12 Ensayado por:

Torres Estefania/Maita Galo

 NORMA ENSAYO:
 T-180 "D"
 DATOS DEL MOLDE
 5

 GOLPES/CAPA:
 56
 ALTURA :
 11,64 cm.

 No. DE CAPAS:
 5,00
 DIAMETRO:
 15,24 cm.

 PESO MARTILLO:
 10,00 lbr
 VOLUMEN :
 2.123 cm3

 ALT. DE CAIDA:
 45,72 cm.
 PESO :
 6.418 gr.

DATOS PARA LA CURVA:

PUNTO No.:	7 1	2	* 3	4
Peso comp.:	11.271	11.607	11.739	11.726
Peso suelo:	4.853	5.189	5.321	5.308
Dens. Hum :	2.286	2.444	2.506	2.500

CONTENI DOS DE HUMEDAD:

W. hum.:	134,83	154,51	144,37	150,94	148,59	142,95	183,41	155,48
W. seco:	131,46	150,42	138,44	144,66	140,22	134,87	169,99	143,98
W. caps:	27,97	27,98	28,13	26,44	21,59	27,70	28,28	23,21
w (%)	3,26	3,34	5,38	5,31	7,06	7,54	9,47	9,52
promedio)	3, 30		5, 34		7, 30		9, 50
Dens. Se	eca:	2. 213		2.320		2. 336		2. 283

RESULTADOS: DENSI DAD SECA MAXI MA = 2.340 Kg/ m3 CONT. DE AGUA OPTI MO = 7,00 %

2.360
2.350
2.340
2.320
2.310
2.300
2.290
2.290
2.280
2.270
2.260
2.250
2.240
2.230
3 4 5 6 7 8 9

% DE HUMEDAD

ENSAYO DE COMPACTACION

PROYEC: Diseño de Pavimento Flexible en la Av. Alfredo Adum

entre Av. Colón y Av Jaime Roldos.

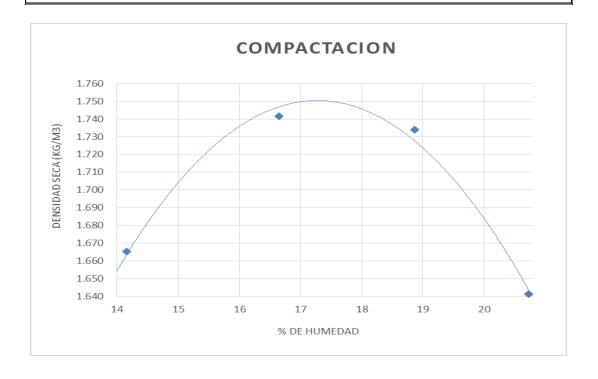
USO: Sub Rasante(0,50) Abscisa: 1+000 lzq

FECHA: 2016/06/12 Ensayado por:

Torres Estefania/Maita Galo

NORMA ENSAYO:	T-180 "A"	DATOS DEL MOLDE	10	
GOLPES/CAPA:	25	ALTURA :	11,64	cm.
No. DE CAPAS:	5,00	DIAMETRO:	10,16	
PESO MARTILLO:	10,00 Lbr	VOLUMEN :	944	cm3
ALT. DE CAIDA:	45,72 cm.	PESO :	4.203	gr.

DATOS PARA LA CURVA:


PUNTO No.:	1	2	~ 3	4
Peso comp.:	5.997	6.120	6.148	6.073
Peso suelo:	1.794	1.917	1.945	1.870
Dens. Hum :	1.901	2.031	2.061	1.982

CONTENI DOS DE HUMEDAD:

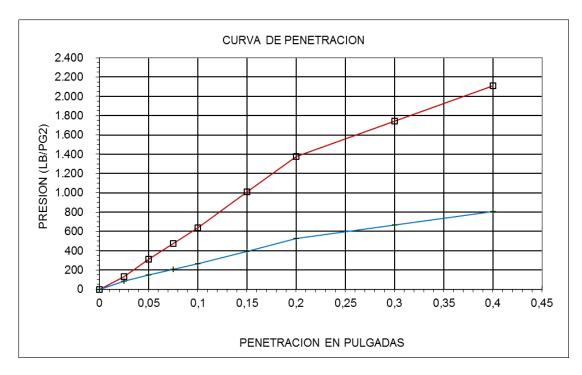
Dens. Se	eca:	1, 665		1, 741		1. 734		1, 641
pr ome di d		14, 16		16, 65		18, 87		20, 73
w (%)	14,00	14,33	16,61	16,68	18,94	18 , 79	20,69	20,77
W. caps:	28,29	27,58	27,91	23,24	28,27	28,67	28,16	28,42
W. seco:	98,74	107,51	116,06	99,42	112,12	111,10	104,05	97,03
W. hum.:	108,60	118,96	130,70	112,13	128,00	126,59	119,75	111,28

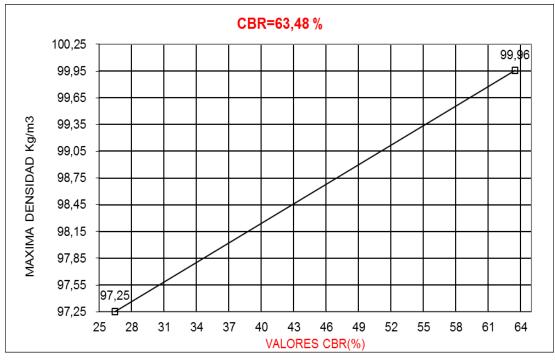
RESULTADOS: DENSI DAD SECA MAXI MA = 1.750 Kg/ m3

CONT. DE AGUA OPTI MO = 17,30 %

PROYECTO: Abscisa:	Di seño pa Y Av Jai me 1+000 lzq 2016-06-16	exible e	en la Av. Alfredo Adum entre Av Colon ENSAYADO POR: Torres Est/Maita Ga HOJA 1 Uso: Base				
FECHA:	2010-00-10			PROF	JND(m):	0, 10	
D. T. CO. D. T				_		_	
DATOS DEL I	MOLDEO		DE CAPAS ARTILLO =		1.	Alza =	5,00
MOLDE No.:	6			12			
Altura =	17,84 cr		17,84			cm.	
Diámetro =	15,15 cr		15,15			cm.	
Golpes/capa	10/10 0	61	10/10	01•	27	J 7	
Peso comp.:		13.058			13.050		
Peso molde:		7.226			7.388		
Peso suelo:		5.832			5.662		
Volumen :		2.315			2.315		
Dens. Hum :		2.520			2.446		
Delio: Ham :		2.020			2.110		
CONTENI DOS	DE HUMEDAD	DE MOLDEO:					
	6			12			
W. humedo :	134,75	134,75	150,61		150,61		
W. seco :	127,40	127,40	142,89		142,89		
W. capsula:	21,59	21,59	27,96		27,96		
w (%) :	6,95	6 , 95	6,72		6,72		
w(%) prom.:		6,95			6,72		
Dens. Seca:		2.356			2. 292	0	
CONTENI DOS	DE HUMEDAD	LUEGO DE L	.A SATUR	ACI ON			
	100.05	400.05	4.5				
W. humedo :	123,95	-	147,82		147,82		
W. seco :	115,27		136,13		136,13		
W. capsula:	26,28	26,28	27,70		27,70		
w (%) :	9,75	9,75	10,78		10,78		
w(%) prom.:		9 , 75			10,78		
PORCENTAJE	DE AGUA AB	SORBI DA:					
	6			12			
Peso satr.:		13.166			13.118		
Agua abs. :		108			68		
% agua ab.:		1,85			1,20		
	DE COMPACTA						
DENSI DAD M	AXI MA:	2. 357	Н	UMEDA	D OPTI M	<mark>A: 6, 50</mark>	
		99,96			07.05		
		44 46			4/75		
<pre>% Compact.: Variacion w%</pre>		(0,45)			97 , 25 (0 , 22)		

			ENSAYO	CBK	
PROYECTO: Abscisa:	Diseño pa Y Av Jaim 1+000 Izq				redo Adum entre Av Colon :Torres Est/Maita Ga Base
FECHA:	2016-06-10	5		PROFUND (m)	
		·			
					HOJA 2
ESPONJAMI EN	NT O				
				40	
MOLDE No.:		i		12	
Tiempo (dias	dial E -3 "	%	dial E -3 "	%	
0	0	0, 00	0,0	0, 00	
1	0,0	0,00	0,0	0,00	
2	0,0	0,00	0,0	0,00	
3	0,0	0, 00	0, 0	0, 00	
4	0,0	0, 00	0, 0	0, 00	
			CONS. DEF	=	1,0000
PENETRACI ON	N		CONSTANTE		3,1900
MOLDE No.:	(3		12	
penetracion	dial	presion	dial	presion	
(pulgadas)	KN	l b/ pl g2	KN	l b/ pl g2	
0 000	0.00	0.00	0.00	0.00	
0,000 0,025	0,00 41,00	0, 00 130, 79	0,00 26,00	0,00 82,94	
0,023	97,00	309, 43	46,00	146,74	
0,075	148,00	472, 12	65,00	207, 35	
0,100	199,00	634, 81	83,00	264, 77	
0,150	316,00	1.008,04	123,00	392, 37	
0,200	431,00	1.374,89	165,00	526, 35	
0,300	547,00	1.744,93	209,00	666,71	
0,400	662,00	2. 111, 78	253 , 00	807, 07	
VALORES COF	RREGI DOS:				
	presion		valor		% de
	lb/plg2		CBR		compact.
	634,81		63, 48		99,96
	264,77		26, 48		97,25


ANOTACIONES:


Graficos CBR

PROYECTO: Diseño pavimento Flexible en la Av. Alfredo Adum entre Av Colon

Y Av Jaime Roldos ENSAYADO POR: Torres Est/Maita Ga

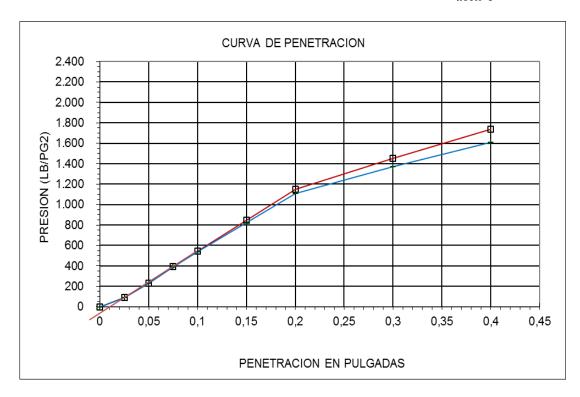
ноја 3

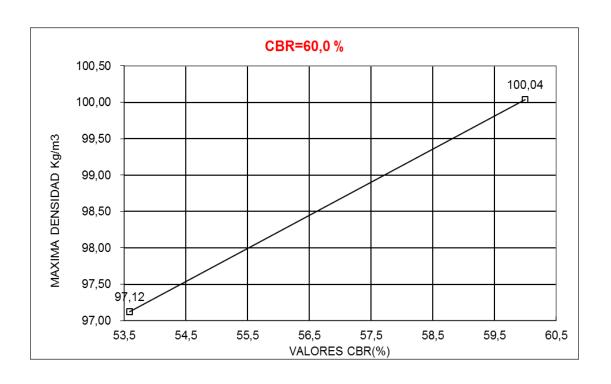
			<u> </u>	J GDI					
PROYECTO:	Diseño pa Y Av Jaime		exible e						
Abscisa:	1+000 lzq			Uso:	redo Adum entre Av Colon Torres Est/Maita Ga HOJA 1 Sub Base 0,60 Alza = 5,0				
FECHA:	2016-06-16			PROFUND (m):	0,60				
DATOS DEL	MOLDEO	No.	DE CAPAS	= 5	Alza =	5.00			
			ARTILLO =			7,77			
MOLDE No.:	5			11					
Altura =	17,84 cm	n .	17,84	cm.	cm.				
Diámetro =	15,15 cm		15,15						
Golpes/capa		61		27	Ţ,				
Peso comp.:		12.984		12.539					
Peso molde:		7.180		6.912					
Peso suelo:		5.804							
				5.627					
Volumen :		2.315		2.315					
Dens. Hum :		2.508		2.431					
CONTENI DOS	DE HUMEDAD	DE MOLDEO:							
	5			11					
W. humedo :	193,47	193,47	173,91	173,91					
W. seco :	182,48	182,48	164,41	164,41					
W. capsula:	28,15	28,15							
w (%) :		7,12	6,97	6,97					
w(%) prom.:		7,12	.,	6,97					
Davis Casa		0.044		0.070					
Dens. Seca:		2. 341		2. 273		0			
CONTENI DOS	DE HUMEDAD	LUEGO DE I	A SATUR	ACI ON:	T				
W. humedo :	155 70	155 70	155 07	155 27					
	155,72	155,72		•					
W. seco :	144,07	144,07	142,65	•					
W. capsula:	27,03	27,03	28,12						
w (%) :		9,95	11,02	11,02					
w(%) prom.:		9,95		11,02					
PORCENTAJE	DE AGUA ABS	SORBI DA:							
	5			11					
Peso satr.:		13.036		12.676					
Agua abs. :		52		137					
% agua ab.:		0,90		2,43					
PORCENTA.IF	DE COMPACTA	ACI ON:							
DENSI DAD M		2. 340	н	JMEDAD OPTIN	MA: 7, 0	0			
% Compact.:		100,04		97,12					
Variacion w%	:	(0,12)		0,03					
İ									

PROYECTO:	Y Av Jaim		exible en	la Av. Al	
Abscisa:	1+000 lzq 2016-06-16	•		Uso:	Sub Base
FECHA:	2016-06-16	<u> </u>		PROFUND (m) 0,60
					HOJA 2
5000NI 445 5N	T-0				
ESPONJAMI EN	II O:				
MOLDE No.:		5		11	
Tiempo (dias)	dial E -3 "	%	dial E -3 "	%	
0	0	0, 00	0,0	0, 00	
1	0,0	0,00	0,0	0,00	
2	0,0	0,00	0,0	0,00	
0 1 2 3 4	0,0 0,0	0, 00 0, 00	0, 0 0, 0	0, 00 0, 00	
PENETRACI ON	<u> </u>		CONS. DEF		1,0000 3,1900
MOLDE No.:		5		11	
penetracion (pulgadas)	dial KN	presion lb/plg2	dial KN	presion Ib/plg2	
0,000 0,025 0,050 0,075	0,00 28,00 73,00 123,00	0,00 89,32 232,87 392,37	0,00 28,00 73,00 122,00	0,00 89,32 232,87 389,18	
0,100 0,150 0,200 0,300	170,00 266,00 361,00 456,00	542, 30 848, 54 1. 151, 59 1. 454, 64	168,00 259,00 347,00 429,00	535, 92 826, 21 1. 106, 93 1. 368, 51	
0,400	545,00	1. 738, 55	505,00	1. 610, 95	
VALORES COR	REGI DOS:				
	presion lb/plg2		valor CBR		% de compact.
	600,00 535,92		60, 00 53, 59		100,04 97,12

ANOTACIONES:

Graficos CBR


Diseño pavimento Flexible en la Av. Alfredo Adum entre Av Colon PROYECTO:


Y Av Jaime Roldos

ENSAYADO POR:/Maita Ga Sub Base

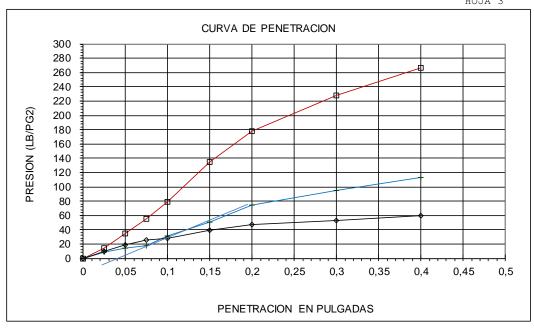
1+000 lzq ABSCISA: Uso: 2016-06-16 FECHA: PROFUND (m): 0,60

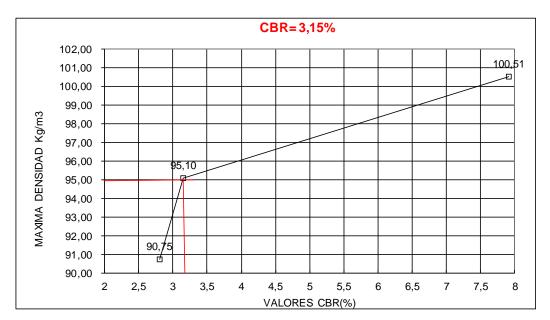
ноја 3

PROYECTO: Abscisa:	Diseño pa Y Av Jaime 1+000 Izq 2016-06-16		exible e	n la Av. Alf ENSAYADO POR USO: PROFUND(m):	: Torres Es Sub-Rasa	.,	on Hoja 1
FECHA:	2016-06-16			PROFUND(m):	0, 50		
DATOS DEL M	MOLDEO		DE CAPAS ARTILLO =			Alza =	5,00
MOLDE No.:	,	7		11		41	
Altura =	17,76 cm	١.	17,76	cm.	17,76	cm.	
Diámetro =	15,19 cm	1.	15,19	cm.	14,58	cm.	
Golpes/capa		61		27		11	
Peso comp.:		11.983		11.433		10.862	
Peso molde:		7.218		6.912		6.892	
Peso suelo:		4.765		4.521		3.970	
Volumen :		2.312		2.312		2.130	
Dens. Hum :		2.061		1.955		1.864	
CONTENI DOS	DE HUMEDAD			11		41.00	
W. humedo :	160,51	160,51	137,39	137,39	147,53	147,53	
W. seco :					129,92	•	
	141,11 27,99	141,11 27,99	121,21 28,67	121,21 28,67	28,35	28,35	
W. capsula:		•		•		•	
W (%) :	17,15	17,15	17,48	17,48	17,34	17,34	
w(%) prom.:		17,15		17,48		17,34	
Dens. Seca:		1.759		1.664		1.588	
CONTENI DOS	DE HUMEDAD	LUEGO DE L	_A SATURA	ACI ON:			
W. humedo :	103,37	103,37	116,77	116,77	114,48	114,48	
W. seco :	85,66	85 , 66	95,33	95,33	92,66	•	
W. capsula:	28,01	28,01	27,75	27 , 75	27,72	27 , 72	
w (%) :	30,72	30,72	31,73	31,73	33,60	33,60	
w(%) prom.:	30,72	30,72	31,73	31,73	33,00	33,60	
<u>-</u>	DE ACUA ADO				•		
FURCENTAJE	DE AGUA ABS	7		11		41	
Peso satr.:	<u> </u>	12.065		11.730		11.215	
Aqua abs. :		82		297		353	
% agua ab.:		1,72		6,57		8,89	
	DE COMPACT	-		., .	•		
DENSIDAD M	DE COMPACTA	1.750	Н	UMEDAD OPTIN	A:	17, 30	
						,	
% Compact.:		100,51		95,10		90,75	
Variacion w%	:	0,15		(0,18)		(0,04)	
		•		. , - ,	1	. , ,	

DDOMEGEO	Di saña m	avi manta Fl	avible on	la Av. Alf.	rada Adıım	ant va Av Cal an
PROYECTO:	Diseño pa v Av. Jai			IA AV. AITI ENSAYADO POR:		entre Av Colon
BSCISA:	1+000 lzg		-			
ECHA:	1+000 Izq MUESTRA No. Sub-Rasant e 2016-06-16 PROFUND (m): 0,50					
201111				111010112 (111)	<u> </u>	
						ноја 2
ESPONJAMIEN	NTO:					
WOLDE No.:		7		11		41
WOLDE NO		<u> </u>		1.1		71
Tiempo (dias	dial	%	dial	%	dial	%
	E -3 "		E -3 "		E -3 "	
	_	0.00		0.00	_	0.00
)	0	0, 00	0,0	0, 00	0	0,00
-)	226,0 276,0	4,50 5,49	327,0 358,0	6, 51 7, 13	306,0 315,0	6,09 6,27
2	292,0	5, 49 5, 81	366, 0	7, 13 7, 29	317, 0	6, 31
- 2 3	295,0	5, 87	371, 0	7, 29	326, 0	6, 49
•	233,0	0,01	. 071,0	,, 00	020,0	J, 10
			CONS. DEF	=		1,0000
PENETRACI ON	N		CONSTANTE	=		0,7000
WOLDE No.:	´7		11		41	
penetracion	dial	presion	dial	presion	dial	presion
(pulgadas)	KN	l b/ pl g2	KN	lb/plg2	KN	l b/ pl g2
0,000	0,00	0,00	0,00	0,00	0,00	0,00
0,000	20,00	14,00	12,00	8, 40	13,00	9, 10
0,023	49,00	34, 30	20,00	14,00	26,00	18, 20
0,030	79,00	55, 30	25,00	17, 50	36,00	25, 20
0,100	113,00	79, 10	45,00	31, 50	40,00	28, 00
0,150	192,00	134, 40	73,00	51, 10	56,00	39, 20
0,200	254,00	177, 80	107,00	74, 90	67,00	46, 90
•	•	•			-	•
•	•	•			-	•
0,300 0,400	326,00 381,00	228, 20 266, 70	136,00 162,00	95, 20 113, 40	76,00 86,00	53, 20 60, 20
/ALORES COF	RREGI DOS:				<u> </u>	
	presion		valor		% de	
	lb/plq2		CBR		compact.	
	79,10		7, 91		100,51	
	31,50		3, 15		95,10	
	28,00		2,80		90,75	
	•		1		,	

Graficos CBR


PROYECTO: Diseño pavimento Flexible en la Av. Alfredo Adum entre Av Colon


Y av. Jai me Roldos ENSAYADO POR::/Maita Ga

LOCALIZ.: MUESTRA No. Sub-Rasante

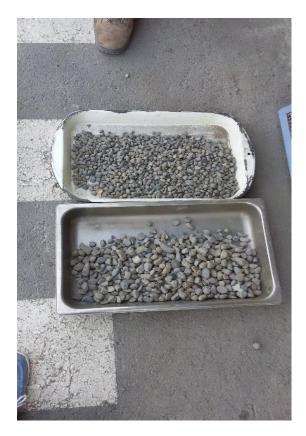
FECHA: 2016-06-16 PROFUND (m): 0,50

ноја 3

ANEXO 3

Registro fotográfico

Toma de Muestras en la abscisa 0+0550 lado derecho.


Toma de muestras en la abscisa 1+000 lado izquierdo

Traslado de muestras al laboratorio de Suelos y Materiales "Ing. Julio Hidalgo G" del proyecto Concesiones Viales del Guayas.

Secado de Muestras

ANEXO 4

Calculo de Curvas Horizontales.

Datos de Curva 1:

Radio: 1145.916

Absc. PC: 0+393.20

 Δ = 3°30'37.23"

Tangente

$$T = R.tg\left(\frac{\Delta}{2}\right)$$

$$T = 1145.916 tg\left(\frac{3^{\circ}30'37.23''}{2}\right)$$

$$T = 35.1144$$

Calculo de longitud de cuerda (Lc):

$$Lc = \frac{\pi \cdot R}{180} \Delta$$

$$Lc = \frac{\pi \cdot (1145.916)}{180} 3^{\circ}30'37.23''$$

$$Lc = 70.207$$

Calculo de la abscisa PC:

$$PI = PC + T$$

 $PI = 0 + 393.20 + 35.1144$
 $PI = 0 + 428.314$

Calculo de la abscisa PT:

$$PT = PC + Lc$$

 $PT = 0 + 393.2 + 70.20$
 $PT = 0 + 463.40$

PUNTO	ABSCISA	CUERDA	∆/2 PARCIAL	∆/2 ACUMULADO
PC	0+393.20	0.00	0.00	0.00
1	0+400.00	6.80	0.17	0.17
2	0+420.00	20.00	0.50	0.67
3	0+440.00	20.00	0.50	1.17
4	0+460.00	20.00	0.50	1.67
PT	0+463.00	3.40	0.08	1.75

Datos de Curva 2

Radio: 286.479

Absc. PC: 0+509.71

Δ=10°35'38.36"

Tangente

$$T = R. tg\left(\frac{\Delta}{2}\right)$$

$$T = 286.479 tg\left(\frac{10^{\circ}35'38.36''}{2}\right)$$

$$T = 26.561$$

Calculo de longitud de cuerda (Lc):

$$Lc = \frac{\pi \cdot R}{180} \Delta$$

$$Lc = \frac{\pi \cdot (286.479)}{180} 10^{\circ}35'38.36''$$

$$Lc = 52.97$$

Calculo de la abscisa PC:

$$PI = PC + T$$

 $PI = 0 + 509.71 + 26.561$
 $PI = 0 + 536.271$

Calculo de la abscisa PT:

$$PT = PC + Lc$$

 $PT = 0 + 509.71 + 52.97$
 $PT = 0 + 562.68$

PUNTO	ABSCISA	CUERDA	∆/2 PARCIAL	∆/2 ACUMULADO
PC	0+509.71	0.00	0.00	0.00
1	0+520.00	10.29	1.03	1.03
2	0+540.00	20.00	2.00	3.03
3	0+560.00	20.00	2,00	5.03
PT	0+562.68	2.68	0.27	5.30

Datos de Curva 3

Radio: 3437.747

Absc. PC: 0+651.47

 Δ =0°59'37.97"

Tangente

$$T = R.tg\left(\frac{\Delta}{2}\right)$$

$$T = 3437.747 tg\left(\frac{0^{\circ}59'37.97''}{2}\right)$$

$$T = 29.817$$

Calculo de longitud de cuerda (Lc):

$$Lc = \frac{\pi.R}{180}\Delta$$

$$Lc = \frac{\pi.(3437.747)}{180}0^{\circ}59'37.97"$$

$$Lc = 59.633$$

Calculo de la abscisa PC:

$$PI = PC + T$$

$$PI = 0 + 651.47 + 29.817$$

$$PI = 0 + 681.29$$

Calculo de la abscisa PT:

$$PT = PC + Lc$$

$$PT = 0 + 651.47 + 59.633$$

$$PT = 0 + 711.10$$

PUNTO	ABSCISA	CUERDA	∆/2 PARCIAL	∆/2 ACUMULADO
PC	O+651.47	0.00	0.00	0.00
1	0+660.00	8.53	0.07	0.07
2	0+680.00	20.00	0.17	0.24
3	0+700.00	20.00	0.17	0.40
PT	0+711.10	11.10	0.09	0.50

Datos de Curva 4

Radio: 1718.873

Absc. PC: 1+032.33

Δ=1°24'22.70"

Tangente

$$T = R. tg\left(\frac{\Delta}{2}\right)$$

$$T = 1718.873 tg\left(\frac{1^{\circ}24'22.70''}{2}\right)$$

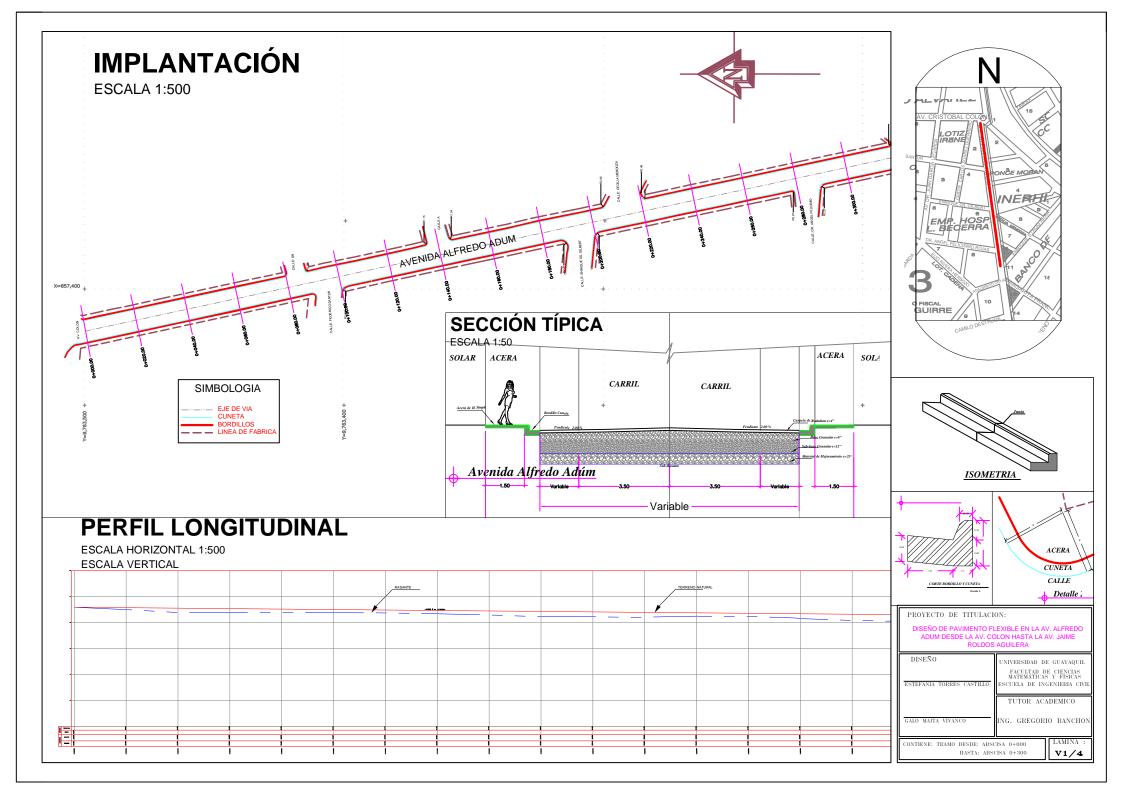
$$T = 21.096$$

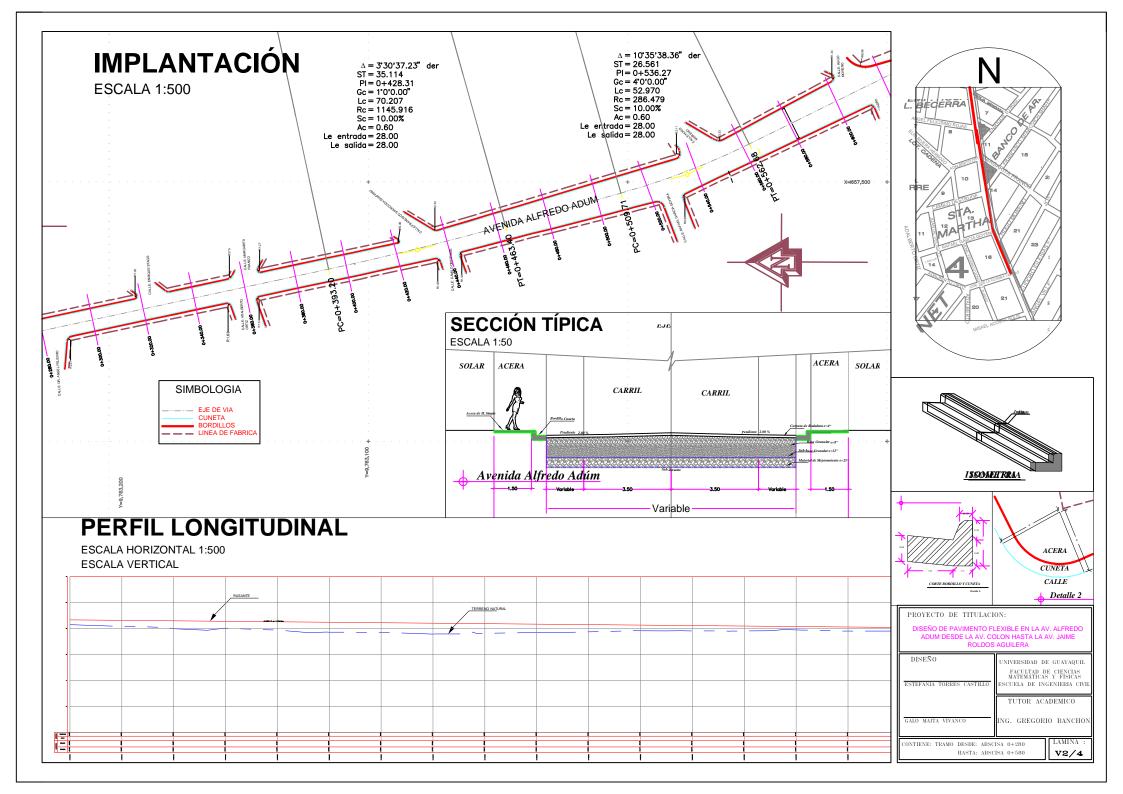
Calculo de longitud de cuerda (Lc):

$$Lc = \frac{\pi \cdot R}{180} \Delta$$

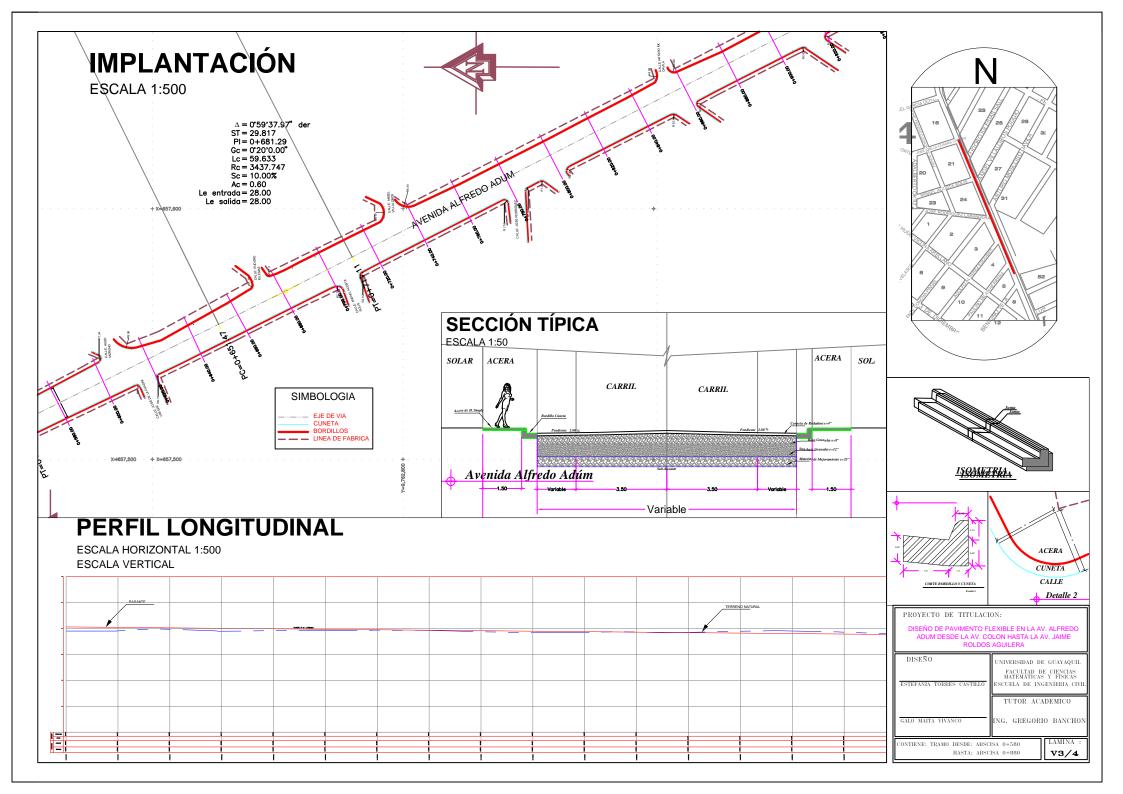
$$Lc = \frac{\pi \cdot (1718.873)}{180} 1^{\circ}24'22.70''$$

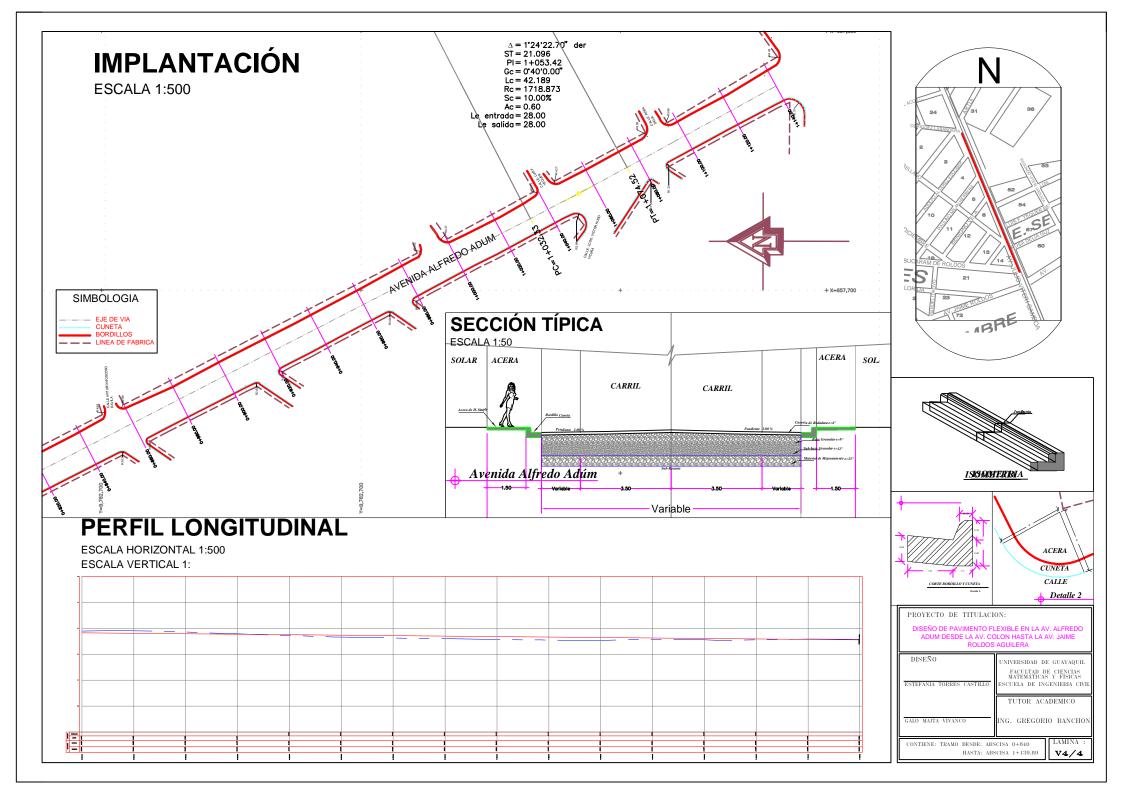
$$Lc = 42.189$$


Calculo de la abscisa PC:


$$PI = PC + T$$

 $PI = (1 + 032.33) + 21.096$
 $PI = 1 + 053.42$


Calculo de la abscisa PT:


$$PT = PC + Lc$$

 $PT = (1 + 032.33) + 42.189$
 $PT = 1 + 074.52$

PUNTO	ABSCISA	CUERDA	∆/2 PARCIAL	∆/2 ACUMULADO
PC	1+032.33	0.00	0.00	0.00
1	1+040,00	7.67	0.13	0.13
2	1+060.00	20.00	0.33	0.46
PT	1+074.52	14.52	0.24	0.70

BIBLIOGRAFÍA

- Aleman Vasques, h., Juarez Reyes, F., & Nerio Aguilar , J. I. (Marzo 2015). *Tesis Diseño Geometrico de Camino Vecinal Montañoso.* El Salvador.
- ALFONSO, M. F. (2002). Ingenieria de Pavimentos para Carretera.
- Grisales, R. C. (1994). *INGENIERIA DE TRANSITO FUNDAMENTOS Y APLICACIONES*. Mexico: Ediciones Alfaomega, S.A. de C.V.
- MOP-001-F-2002. (2002). ESPECIFICACIONES GENERALES PARA LA CONSTRUCCION DE CAMINOS Y PUENTES.
- MOP-2003. (2003). NORMAS DE DISEÑO GEOMETRICO DE CARRETERAS.
- Rafael Cal y Mayor Reyes Spíndola, J. C. (1994). *Ingenieria de Transito fundamentos y aplicaciones*.

 Mexico: Ediciones Alfaomega, S.A. de C.V.

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGIA FICHA DE REGISTRO DE TESIS "DISEÑO DE PAVIMENTO FLEXIBLE EN LA AV. ALFREDO ADÚM DESDE LA AV. COLÓN HASTA LA AV. TÍTULO Y JAIME ROLDÓS AGUILERA EN EL CANTÓN MILAGRO, PROVINCIA DEL GUAYAS. SUBTÍTULO AUTOR/ES: **REVISORES:** ESTEFANIA SORANGE TORRES CASTILLO Ing. Gregorio Banchon GALO ROBERTO MAITA VIVANCO Ing. Carlos Mora Cabrera MS.C Ing. Julio Vargas Jimenez Ms,c INSTITUCIÓN: Universidad de Guayaquil FACULTAD: De Ciencias Matematicas y Fisicas CARRERA: Ingenieria civil FECHA DE PUBLICACIÓN: Nº DE PÁGS: 61 ÁREAS TEMÁTICAS: Vias DISEÑO DE PAVIMENTO FLEXIBLE PALABRAS CLAVE: <DISEÑO DE PAVIMENTO FLEXIBLE> <TRAFICO><ESAL'S><ESTUDIOS DE SUELOS> **RESUMEN:** El presente trabajo, el cual se refiere al diseño de pavimento flexible, describirá sus características para poder cumplir con los requisitos del Ministerio de Transporte y Obras Públicas. En la ciudad de Milagro provincia del Guayas, la situación actual de la Av. Alfredo AdÚm, produce incomodidad para los moradores, contaminación en el medio ambiente, pérdida de tiempo en su recorrido. Para el efecto es fundamental realizar el estudio de ráfico, que determina las características constructivas de la vía, para el diseño constructivo nos guiaremos en el metódo ASHTO-93, especificaciones y normas técnicas necesarias para poder cumplir con los requisitos del MTOP, también se describirán las características del suelo de fundación. N. DE REGISTRO (en base de datos): Nº. DE CLASIFICACIÓN: DIRECCIÓN URL (tesis en la web): ADJUNTOS PDF: SI estefytorres24@gmail.com E-mail: galoroberto21@gmail.com 988228010 996574953 CONTACTOS CON AUTOR/ES: Teléfono: Nombre: FACULTAD DE CIENCIAS MATEMATICAS Y FISICAS CONTACTO EN LA INSTITUCIÓN: Telèfono: Quito: Av. Whymper E7-37 y Alpallana, edificio Delfos, teléfonos (593-2) 2505660/1: y en la 1

Av. 9 de octubre 624 y Carrión, edificio Prometeo, teléfonos: 2569898/9, Fax: (593 2) 250-9054