

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS NATURALES CARRERA DE INGENIERÍA AMBIENTAL

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA AMBIENTAL

TEMA:

ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A

LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL

MORRO-GUAYAS

AUTOR: Gladys Migdalia Freire Castro

TUTOR: Dr. Wilson Orlando Pozo Guerrero, PhD.

GUAYAQUIL, SEPTIEMBRE 2019

ANEXO 4

Guayaquil, 8 de agosto de 2019

Señor Ingeniero
Vinicio Macas Espinosa. MSc.
DIRECTOR (E) DE LA CARRERA INGENIERIA AMBIENTAL
FACULTAD CIENCIAS NATURALES
UNIVERSIDAD DE GUAYAQUIL
Ciudad.-

De mis consideraciones:

Envío a Ud. el Informe correspondiente a la tutoría realizada al Trabajo de Titulación ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS, de la estudiante GLADYS MIGDALIA FREIRE CASTRO, indicando ha cumplido con todos los parámetros establecidos en la normativa vigente:

- El trabajo es el resultado de una investigación.
- El estudiante demuestra conocimiento profesional integral.
- El trabajo presenta una propuesta en el área de conocimiento.
- El nivel de argumentación es coherente con el campo de conocimiento.

Adicionalmente, se adjunta el certificado de porcentaje de similitud y la valoración del trabajo de titulación con la respectiva calificación.

Dando por concluida esta tutoría de trabajo de titulación, **CERTIFICO**, para los fines pertinentes, que la estudiante está apra para continuar con el proceso de revisión final.

Atentamente,

Wilson Pozo Guerrero, PhD.

C.I. 0400440590

RECIBIDO

Herlinda Flores

ANEXO 5

RÚBRICA DE EVALUACIÓN TRABAJO DE TITULACIÓN

Título del Trabajo: ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS.

Autor(s): Gladys Migdalia Freire Castro

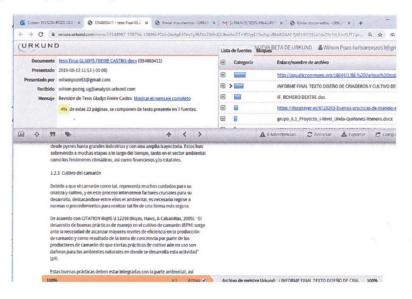
ASPECTOS EVALUADOS	PUNTAJE MÁXIMO	CALF
ESTRUCTURA ACADÉMICA Y PEDAGÓGICA	4.5	4.5
Propuesta integrada a Dominios, Misión y Visión de la Universidad de Guayaquil.	0.3	0.3
Relación de pertinencia con las líneas y sublíneas de investigación Universidad / Facultad/ Carrera	0.4	0.4
Base conceptual que cumple con las fases de comprensión, interpretación, explicación y sistematización en la resolución de un problema.	1	1
Coherencia en relación a los modelos de actuación profesional, problemática, tensiones y tendencias de la profesión, problemas a encarar, prevenir o solucionar de acuerdo al PND-BV	1	1
Evidencia el logro de capacidades cognitivas relacionadas al modelo educativo como resultados de aprendizaje que fortalecen el perfil de la profesión	1	1
Responde como propuesta innovadora de investigación al desarrollo social o tecnológico.	0.4	0.4
Responde a un proceso de investigación – acción, como parte de la propia experiencia educativa y de los aprendizajes adquiridos durante la carrera.	0.4	0.4
RIGOR CIENTÍFICO	4.5	4.5
El título identifica de forma correcta los objetivos de la investigación	1	1
El trabajo expresa los antecedentes del tema, su importancia dentro del contexto general, del conocimiento y de la sociedad, así como del campo al que pertenece, aportando significativamente a la investigación.	1	1
El objetivo general, los objetivos específicos y el marco metodológico están en correspondencia.	1	1
El análisis de la información se relaciona con datos obtenidos y permite expresar las conclusiones en correspondencia a los objetivos específicos.	0.8	0.8
Actualización y correspondencia con el tema, de las citas y referencia bibliográfica	0.7	0.7
PERTINENCIA E IMPACTO SOCIAL	1	1
Pertinencia de la investigación	0.5	0.5
Innovación de la propuesta proponiendo una solución a un problema relacionado con el perfil de egreso profesional	0.5	0.5
CALIFICACIÓN TOTAL *	10	10

* El resultado será promediado con la calificación del Tutor Revisor y con la calificación de obtenida en la Sustentación oral.

Wilson Pozo Guerrero, PhD. No. C.I. 0400440590 RECIBIDO

HORA

Herdinela dettiras Ergire



ANEXO 6

CERTIFICADO PORCENTAJE DE SIMILITUD

Habiendo sido nombrado Wilson Pozo Guerrero PhD, tutor del trabajo de titulación certifico que el presente trabajo de titulación ha sido elaborado por Gladys Migdalia Freire Castro C.C.:0926509134, con mi respectiva supervisión como requerimiento parcial para la obtención del título de Ingeniera Ambiental.

Se informa que el trabajo de titulación: ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS, ha sido orientado durante todo el periodo de ejecución en el programa antiplagio Urkund quedando el 4% de coincidencia.

https://secure.urkund.com/view/53344997-170736-

128986#DcIxDoAgEATAv1y9MXd7IMhXjIUhaiikoTT+XSfzyD2krAqLsBkk6GAAE7jAFU6EDTLa1dyZ6t7

rIUUn9UT7qxqZY8rvBw=

Wilson Pozo Guerrero, PhD.

C.I. 0400440590

RECIBIDO

HOR

16:30 - AGO 201

Herlinda Flores Freire

ANEXO 7

Guayaquil, 23 de agosto de 2019

Señor Ingeniero Vinicio Macas Espinosa, MSc. DIRECTOR (E) DE LA CARRERA DE INGENIERÍA AMBIENTAL FACULTAD CIENCIAS NATURALES UNIVERSIDAD DE GUAYAQUIL

De mis consideraciones:

Envío a Ud. el Informe correspondiente a la **REVISIÓN FINAL** del Trabajo de Titulación ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS, de la estudiante GLADYS MIGDALIA FREIRE CASTRO. Las gestiones realizadas me permiten indicar que el trabajo fue revisado considerando todos los parámetros establecidos en las normativas vigentes, en el cumplimento de los siguientes aspectos:

Cumplimiento de requisitos de forma:

- El título tiene un máximo de 18 palabras.
- La memoria escrita se ajusta a la estructura establecida.
- El documento se ajusta a las normas de escritura científica seleccionadas por la Facultad.
- La investigación es pertinente con la línea y sublíneas de investigación de la carrera.
- Los soportes teóricos son de máximo 5 años.
- La propuesta presentada es pertinente.

Cumplimiento con el Reglamento de Régimen Académico:

- El trabajo es el resultado de una investigación.
- El estudiante demuestra conocimiento profesional integral.
- El trabajo presenta una propuesta en el área de conocimiento.
- El nivel de argumentación es coherente con el campo de conocimiento.

Adicionalmente, se indica que fue revisado, el certificado de porcentaje de similitud, la valoración del tutor, así como de las páginas preliminares solicitadas, lo cual indica el que el trabajo de investigación cumple con los requisitos exigidos.

Una vez concluida esta revisión, considero que la estudiante GLADYS MIGDALIA FREIRE CASTRO está apta para continuar el proceso de titulación. Particular que comunicamos a usted para los fines pertinentes.

Atentamente.

Williams Sánchez Arízaga, MSc.

C.I. 0925010696

ANEXO 8

RÚBRICA DE EVALUACIÓN MEMORIA ESCRITA TRABAJO DE TITULACIÓN

Título del Trabajo: ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS Autor(s): GLADYS MIGDALIA FREIRE CASTRO.

ASPECTOS EVALUADOS	PUNTAJE MÁXIMO	CALF.	COMENTARIOS
ESTRUCTURA Y REDACCIÓN DE LA MEMORIA	3	3	
Formato de presentación acorde a lo solicitado	0.6	0.6	
Tabla de contenidos, índice de tablas y figuras	0.6	0.6	
Redacción y ortografía	0.6	0.6	
Correspondencia con la normativa del trabajo de titulación	0.6	0.6	
Adecuada presentación de tablas y figuras	0.6	0.6	
RIGOR CIENTÍFICO	6	5.2	
El título identifica de forma correcta los objetivos de la investigación	0.5	0.4	
La introducción expresa los antecedentes del tema, su importancia dentro del contexto general, del conocimiento y de la sociedad, así como del campo al que pertenece	0.6	0.6	
El objetivo general está expresado en términos del trabajo a investigar	0.7	0.7	
Los objetivos específicos contribuyen al cumplimiento del objetivo general	0.7	0.7	
Los antecedentes teóricos y conceptuales complementan y aportan significativamente al desarrollo de la investigación	0.7	0.6	
Los métodos y herramientas se corresponden con los objetivos de la investigación	0.7	0.5	
El análisis de la información se relaciona con datos obtenidos	0.4	0.4	
Factibilidad de la propuesta	0.4	0.4	
as conclusiones expresa el cumplimiento de los objetivos específicos	0.4	0.2	
as recomendaciones son pertinentes, factibles y válidas	0.4	0.2	
Actualización y correspondencia con el tema, de las citas y referencia bibliográfica	0.5	0.5	
PERTINENCIA E IMPACTO SOCIAL	1	0.8	
Pertinencia de la investigación/Innovación de la propuesta	0.4	0.4	
a investigación propone una solución a un problema relacionado con el perfil de egreso profesional	0.3	0.2	
Contribuye con las líneas / sublíneas de investigación de la Carrera/Escuela	0.3	0.2	
CALIFICACIÓN TOTAL* 10			

^{*} El resultado será promediado con la calificación del Tutor y con la calificación de obtenida en la Sustentación oral.

Williams Sánchez Arizaga, MSc. No. C.I. 0925010696

fecha: 23 de Agosto del 2019.

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA

FICHA DE REGISTRO DE TESIS/TRABAJO DE GRADUACIÓN TÍTULO Y SUBTÍTULO: ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESDECTO A

THOLO T SOBIHOLO:	PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS			
AUTOR(ES) (apellidos/nombres):	GLADYS M	IGDALIA FREIRE CASTRO.		
REVISOR(ES)/TUTOR(ES) (apellidos/nombres):		SÁNCHEZ ARÍZAGA, MSC. DZO GUERRERO, PHD.		
INSTITUCIÓN:		UNIVERSIDAD DE GUAYAQUIL		
UNIDAD/FACULTAD:	FACULTAD DE CIENCIAS NATURALES			
TERCER NIVEL:	INGENIERÍA AMBIENTAL			
GRADO OBTENIDO:	INGENIERA AMBIENTAL			
FECHA DE PUBLICACIÓN:		No. DE PÁGINAS:	99	
ÁREAS TEMÁTICAS:	CIENCIAS A	MBIENTALES		
PALABRAS CLAVES/ KEYWORDS:	Camaronera, Parámetros fisicoquímicos, arcilloso, Oxígeno disuelto, Temperatura, Turbidez, Salinidad.			

RESUMEN/ABSTRACT:

En el presente trabajo de investigación, se establece como objetivo principal, realizar un análisis comparativo de los parámetros ambientales influyentes en la producción de camarón y a su vez establecer una guía de manejo con medidas complementarias para obtener máxima producción al mínimo impacto ambiental, dentro de la industria camaronera Plumont, localizada en la Provincia del Guayas en Puerto el Morro, donde se realizó, el análisis en tres estaques de producción (seis, siete y treinta) determinando así que los Parámetros Fisicoquímicos en el agua: pH, alcalinidad, nitritos y nitratos están dentro de los estándares establecidos mientras que el nivel de fósforo supera el nivel estándar en el estanque 30, y se halló deficiencia del mismo parámetro en el estanque 6, por otra parte el tipo de suelo determinado en los 3 puntos de muestreo es arcilloso e impermeable, finalmente el resultado del análisis comparativo entre cada estación de muestreo determina que el Oxígeno Disuelto es mayor en la tarde, en los tres estanques, por el contrario la temperatura tiende a incrementar en horas de la mañana, se debe agregar que el nivel de Turbidez que es la que determina la productividad del agua, da idea del material en suspensión que se encuentra en el estanque, debiendo evitarse las partículas en suspensión y la concentración de detritos, si la visibilidad es mayor de 30 cm, hará crecer mejor el fitoplancton; es mayor en el estanque 7 y menor en el estanque 6, simultáneamente la salinidad que es el parámetro que regula el crecimiento del camarón, registra su nivel más alto en el estanque 30 y el menor nivel en el estanque 7 sin embargo esta variabilidad es poco significativa y óptima para el desarrollo de la producción camaronera en cada piscina. Se concluye que las concentraciones de fósforo a niveles altos favorecen la producción del fitoplancton consecuentemente se incrementa la producción de camarón.

ADJUNTO PDF:	SI	□NO		
CONTACTO CON AUTOR/ES:	Teléfono: 593 982003535	E-mail: gladys.freire.castro@gmail.com		
CONTACTO CON LA	Nombre: Blga	. Miriam Salvador Brito Msc.		
INSTITUCIÓN:	Teléfono: 3080777 - 3080758			
	E-mail: info@	ofccnnugye.com miriam.salvadorb@ug.edu.ec		

ANEXO 11

CERTIFICACIÓN DEL TUTOR REVISOR

Habiendo sido nombrado WILLIAMS SÁNCHEZ ARÍZAGA, tutor revisor del trabajo de titulación ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS, certifico que el presente trabajo de titulación, elaborado por GLADYS MIGDALIA FREIRE CASTRO, con C.I. No. 0926509134, con mi respectiva supervisión como requerimiento parcial para la obtención del título de INGENIERA AMBIENTAL, en la carrera de Ingeniería Ambiental Facultado de Ciencias Naturales, ha sido REVISADO Y APROBADO en todas sus partes, encontrándose apto para su sustentación.

Guayaquil, 23 de agosto del 2019

WILLIAMS SÁNCHEZ ARÍZAGA, MSc.

C.I. No. 0925010696

ANEXO 12

LICENCIA GRATUITA INTRANSFERIBLE Y NO EXCLUSIVA PARA EL USO NO COMERCIAL DE LA OBRA CON FINES ACADÉMICOS

Yo, GLADYS MIGDALIA FREIRE CASTRO con C.I. No.0926509134, certifico que los contenidos desarrollados en este trabajo de titulación, cuyo título es "ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS" son de mi absoluta propiedad y responsabilidad Y SEGÚN EL Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN*, autorizo el uso de una licencia gratuita intransferible y no exclusiva para el uso no comercial de la presente obra con fines académicos, en favor de la Universidad de Guayaquil, para que haga uso del mismo, como fuera pertinente.

GLADYS MIGDALIA FREIRE CASTRO C.I. No. 0926509134

*CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN (Registro Oficial n. 899 - Dic./2016) Artículo 114.- De los titulares de derechos de obras creadas en las instituciones de educación superior y centros educativos.- En el caso de las obras creadas en centros educativos, universidades, escuelas politécnicas, institutos superiores técnicos, tecnológicos, pedagógicos, de artes y los conservatorios superiores, e institutos públicos de investigación como resultado de su actividad académica o de investigación tales como trabajos de titulación, proyectos de investigación o innovación, artículos académicos, u otros análogos, sin perjuicio de que pueda existir relación de dependencia, la titularidad de los derechos patrimoniales corresponderá a los autores. Sin embargo, el establecimiento tendrá una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra con fines académicos.

ANEXO 13

ANÁLISIS COMPARATIVO DE PARÁMETROS AMBIENTALES CON RESPECTO A LA PRODUCCIÓN DE CAMARÓN, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS

Autor: Gladys Freire Castro

Tutor: Wilson Pozo Guerrero, PhD

Resumen

En el presente trabajo de investigación se establece como objetivo principal realizar un análisis comparativo de los parámetros ambientales influyentes en la producción de camarón y a su vez establecer una guía de manejo con medidas complementarias para obtener máxima producción al mínimo impacto ambiental, dentro de la industria camaronera Plumont localizada en la Provincia del Guayas en Puerto el Morro, donde se realizó el análisis en tres estaques de producción (seis, siete y treinta) determinando así que los Parámetros Fisicoquímicos en el agua: pH, alcalinidad, nitritos y nitratos están dentro de los estándares establecidos mientras que el nivel de fosforo supera el nivel estándar en el estanque 30, y se halló deficiencia del mismo parámetro en el estanque 6, por otra parte el tipo de suelo determinado en los 3 puntos de muestreo es arcilloso e impermeable, finalmente el resultado del análisis comparativo entre cada estación de muestreo determina que el Oxígeno Disuelto es mayor en la tarde en los tres estanques, por el contrario la temperatura tiende a incrementar en horas de la mañana, se debe agregar que el nivel de Turbidez es mayor en el estanque 7 y menor en el estanque 6, simultáneamente la salinidad registra su nivel más alto en el estanque 30 y el menor nivel en el estangue 7 sin embargo esta variabilidad es poco significativa y óptima para el desarrollo de la producción camaronera en cada piscina.

Palabras Claves: Camaronera, Parámetros fisicoquímicos, arcilloso, Oxígeno disuelto, Temperatura, Turbidez, Salinidad.

ANEXO 14

COMPARATIVE ANALYSIS OF ENVIRONMENTAL PARAMETERS WITH REGARD TO THE PRODUCTION OF SHRIMP, CAMARONERA PLUMONT PUERTO EL MORRO-GUAYAS

Author: Gladys Freire Castro

Advisor: Wilson Pozo Guerrero, PhD.

Abstract

In this research work, the main objective is to carry out a comparative analysis of the influential environmental parameters in shrimp production and, in turn, establish a management guide with complementary measures to obtain maximum production with minimum environmental impact, within the Plumont shrimp industry located in the Province of Guayas in Puerto el Morro, where the analysis was carried out in three production stations (six, seven and thirty), thus determining the physicochemical parameters in the water: pH, alkalinity, nitrites and nitrates are within those specifically established while the phosphorus level exceeds the standard level in pond 30, and the deficiency of the same parameter was found in pond 6, on the other hand, the type of soil determined at the 3 points sampling is clayey and waterproof, finally the result of the comparative analysis between each determined the station of Sampling that dissolved oxygen is higher in the afternoon in the three ponds, on the contrary When the temperature changes to the morning hours, the turbidity level must be added is higher in pool 7 and lower in pool 6, simultaneously the salinity registers its highest level in the pond 30 and the lowest level in the pond 7, however, this variability is not significant and optimal for the development of shrimp production in each group.

Palabras Claves: Shrimp, Physicochemical parameters, clay, Dissolved oxygen, Temperature, Turbidity, Salinity.

DEDICATORIA

El presente trabajo de investigación está dedicado principalmente a Dios, por ser el inspirador y darme fuerza para continuar en este proceso de obtener uno de mis anhelos profesionales más deseados.

A mis Suegros: Nilda Correa y David Toala, a mi Esposo por ser los principales promotores de este sueño, por confiar y creer en mí desde el principio, por los consejos y la ayuda brindada a lo largo de mi carrera.

A mi hijo Benjamín Toala Freire por ser la inspiración de mi dedicación y lucha día a día y por brindarme mi mejor título de la vida Ser Madre!

A mi Madre Antonieta Castro que con su ejemplo de superación profesional y personal me ha inculcado de que nunca es tarde.

A mis amigos: Geordy Esmeralda, Katiuska Guaygua, Karen Chaparro, Arianna Canga gracias por su ayuda, por el compartir de experiencias y aprendizaje durante todo este tiempo.

AGRADECIMIENTO

Quiero agradecer primeramente a mi tutor el Dr. Wilson Pozo G. PhD. Que con su guía hemos podido concluir este trabajo de titulación con éxito.

Al Grupo Ecuacultivo S.A, al cual pertenece la Camaronera PLUMONT, por permitirme el uso de sus instalaciones para la presente investigación.

Al Arq. Ricardo Menéndez y Arq. Sergio Arosemena, Gerente General y Gerente de Mantenimiento, por cederme los permisos e Información correspondiente del proceso interno de producción.

Al Ing. Acuicultor Ronald Mejillones técnico responsable de campo por guiarme y enseñarme todos los procesos con respecto a la producción el cual aporto de manera significativa para el desarrollo de mi tesis.

TABLA DE CONTENIDO

INTRODU	CCIÓN	1
CAPÍTULO	D1	3
1.1. Plar	teamiento del problema	3
1.2. Forr	nulación y sistematización del problema	4
1.3. Obje	etivos	5
1.3.2.	Objetivo general Objetivos específicos otesis	5
1.5. Just	ificación	6
1.6. Deli	mitación	7
1.7. Ope	racionalización	7
CAPÍTULO) II	8
2.1. Ante	ecedentes	8
2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5.	Calidad de agua Parámetros de calidad	11 11 14 15
2.2.6. 2.2.7.	Topografía Descripción del proceso de producción en la camaronera PLUM	
S.A 2.2.8.	24 Marco legal	30
CAPÍTULO)	31

Desa	rrollo	propuesta	31
3.1.	Áre	a de estudio	31
3.2.	Ме	dición de parámetros in situ	33
3.2	2.1.	Equipos de medición	34
3.2	2.2.	Oxígeno disuelto	36
;	3.2.2	.1. Modo de uso	36
3.2	2.3.	Temperatura (°C)	37
3.2	2.4.	Salinidad	38
;	3.2.4	.1. Modo de uso	38
3.2	2.5.	Turbidez	38
3.3.	Med	dición de parámetros ex situ	40
3.4.	Mu	estreo	40
3.5.	Tra	sporte de muestra	40
3.6.	Aná	álisis de las muestras	40
3.7.	Red	colección de muestras de suelo	41
3.8.	Lev	antamiento topográfico	42
3.9.	Dat	os de producción de camarón	44
3.9).1.	Estanque #6	44
3.9	9.2.	Estanque #7	45
3.9	9.3.	Estanque #30	45
CAPÍ	ÍTUL	O IV	46
4.1.	Res	sultados análisis fisicoquímicos	46
4.1	.1.	pH (agua)	46
4.1	.2.	Alcalinidad	46
4.1	.3.	Nitrito	46
4.1	.4.	Nitrato	46
4.1	.5.	Fosfato	47
4.2.	Res	sultado de análisis de muestras de suelo	47
4.3.	Aná	álisis estadísticos	47

4.3	3.1.	Análisis estadístico de Oxígeno Disuelto	48
4.3	3.2.	Análisis estadístico de Temperatura	49
4.3	3.3.	Análisis estadístico de Turbidez	50
4.3	3.4.	Análisis estadístico de Salinidad	51
4.4.	Dis	cusión	52
4.5.	Des	sarrollo de propuesta	54
4.6.	Cor	nclusiones	56
4.7.	Red	comendaciones	57
4.9.	Ane	exos	62

ÍNDICE DE TABLAS

Tabla 1. Cuadro de operacionalización de variables	7
Tabla 2. Tipos de cultivos / características principales	15
Tabla 3. Formas y rangos deseados de varias substancias inorgánicas	19
Tabla 4. Medidas de lecturas del Disco Secchi	22
Tabla 5. Descripción de ventajas y características AQ1	28
Tabla 6. Marco Legal aplicable para camaroneras	30
Tabla 7. Coordenadas de ubicación estanques de producción	32
Tabla 8. Puntos de Muestreo	40
Tabla 9. Análisis de las muestras, Métodos Científicos	40
Tabla 10. Puntos de Muestreo	41
Tabla 11. Aplicación de fertilizante según la lectura del Disco Secchi	55

ÍNDICE DE FIGURAS

Figura 1. Exportación ecuatoriana del camarón 1991 – 2013	13
Figura 2. Especiales comerciales en el Ecuador	13
Figura 3. Efectos de la alcalinidad sobre las variaciones diarias en pH	
Figura 4. Cadena alimenticia de un estanque.	18
Figura 5. Variabilidad anual en lluvia y salinidad en una camaronera en Ecuador	21
Figura 6. Visibilidad del Disco Secchi en una camaronera	22
Figura 7. Mapa área de estudio camaronera PLUMONT S.A	31
Figura 8. Mapa de esquematización de producción Camaronera PLUMONT	
Figura 9. Registro de Parámetros en bitácora	
Figura 10. Registros de Datos Excel.	34
Figura 11. Oxigenómetro Pro20i	35
Figura 12. Salinómetro Óptico	35
Figura 13. Disco Secchi.	
Figura 14. Toma de Datos Oxígeno Disuelto y Temperatura	37
Figura 15. Medición de Temperatura	37
Figura 16. Medición de Salinidad.	
Figura 17. Toma de datos de Turbidez	
Figura 18. Visibilidad del Disco Secchi.	39
Figura 19. Muestras de Suelo	
Figura 20. Recolección de Muestras de Suelo	
Figura 21. Medición de Estanques, Levantamiento Topográfico	
Figura 22. Ubicación de Puntos en Compuertas de Entrada	
Figura 23. Ubicación de Puntos en Compuertas de Salida	
Figura 24. Datos finales de producción Estanque 6	
Figura 25. Datos de producción Estanque 7.	45
Figura 26. Datos de producción Estanque 30	
Figura 27. Formula de ANDEVA	
Figura 28 Intervalo de Oxígeno Disuelto (am) en Estanques de producción	
Figura 29 Intervalo de Oxígeno Disuelto (pm) en Estanques de producción	
Figura 30 Intervalo de Temperatura (am) en Estanques de producción	49
Figura 31 Intervalo de Temperatura (pm) en Estanques de producción	50
Figura 32 Grafico de Intervalos de Turbidez en Estanques de producción	
Figura 33 Gráfico de Intervalos de salinidad en Estanques de producción	51
ÍNDICE DE ANEXOS	
Anexo 1. Mapa Estanque de producción #6	
Anexo 2. Mapa Estanque de producción #7	63
Anexo 3. Mapa Estanque de producción #30	64

Anexo	4. Mapa levantamiento Topográfico Piscina #6#6	. 65
Anexo	5. Mapa ubicación de Compuertas de entrada y salida Piscina #6	. 66
Anexo	6. Mapa levantamiento Topográfico Piscina #7#7	. 67
Anexo	7: Mapa ubicación de Compuertas de entrada y salida Piscina #7	. 68
Anexo	8. Mapa levantamiento Topográfico Piscina #30	. 69
Anexo	9. Mapa ubicación de Compuertas de entrada y salida Piscina #30	. 70
Anexo	10. Registro de parámetros de Oxígeno y Temperatura semana 1 - 4	. 71
Anexo	11. Registro de parámetros de Oxígeno y Temperatura semana 5 - 8	. 72
Anexo	12. Tabla de registro de parámetros de Oxígeno y Temperatura semana 9 -	· 12
Anexo	13. Tabla de registro de parámetros de Oxígeno y Temperatura semana 13 ·	
Anexo	14. Tabla de registro de parámetros de Oxígeno y Temperatura semana 17 ·	
•		
	15. Tabla de registro de parámetros de Turbidez y Salinidad	
	16. Tabla de registro de parámetro de alimentación semana 1 - 4	
	17. Tabla de registro de parámetro de alimentación semana 5 - 8	
	18. Tabla de registro de parámetro de alimentación semana 9 - 12	
	19. Tabla de registro de parámetro de alimentación semana 13 - 16	
	20. Tabla de registro de parámetro de alimentación semana 17 - 18	
	21. Tabla de registro de datos Supervivencia - Mortandad	
	22. Tabla de registro de Datos de Producción Piscinas #6 #7 #30	
	23. Resultado de Análisis Fisicoquímico	
	24. Resultados de Permeabilidad Muestras de Suelo Piscina #6	
	25. Resultados de Permeabilidad Muestras de Suelo Piscina #7	
	26. Resultados de Permeabilidad Muestras de Suelo Piscina #30	
	27. Resultados de Contenido de Humedad Muestras de Suelo	
	28. Resultados de Porcentaje de Tamiz Muestras de Suelo	
	29. Resultados de análisis de Consistencia del Suelo Piscina #6	
	30. Resultados de análisis de Consistencia del Suelo Piscina #7	
	32. Datos Estadísticos	
	34 Análisis de Varianza ANDEVA Oxigeno (am)	
Anexo	35. Análisis de Varianza ANDEVA Oxígeno Disuelto (pm)	. 34 05
	36. Análisis de Varianza ANDEVA Temperatura (am)	
	37. Análisis de Varianza ANDEVA Temperatura (am)	
	38. Análisis de Varianza ANDEVA Turbidez (cm)	
	39. Análisis de Varianza ANDEVA Salinidad (ppm)	
	40. Estadística Descriptiva resumen de medidas	
	41. Análisis de Componentes Principales	
WIICYO	- 1. Analisis de Componentes i illidipales	. ສສ

INTRODUCCIÓN

En el Ecuador, la producción de camarón ha sido una de las actividades económicas de mayor crecimiento en las últimas dos décadas, sin embargo, esta fuente de producción se ha visto afectada por diversos factores como: climático, sanitarios, políticos gubernamentales y ambientales.

En la publicación Consideraciones sobre la calidad del agua y del suelo en cultivos de camarón, nos indica que:

Los camarones son criaturas delicadas, susceptibles de sufrir estrés ante condiciones ambientales adversas. En condiciones de estrés no comen bien, tienden a enfermarse y crecen despacio. Al mantener condiciones ambientales adecuadas en los estanques, los granjeros pueden incrementar la supervivencia, la conversión alimenticia y la producción de su cultivo (Boyd C., 2017).

De igual forma nos expresa que:

El medio ambiente en un estanque de camarón es esencialmente suelo y agua, y los factores que más afectan al camarón son las variables de calidad de suelo y agua. Los efluentes de las granjas pueden causar efectos adversos en las aguas costeras con el incremento de nutrientes, materia orgánica y sólidos suspendidos (Boyd C., 2017).

Por tal motivo, suelen existir ciertas afectaciones que pueden ser dadas en base a las condiciones de los factores antes mencionados: suelo y agua. Estos deben de cumplir con lineamientos y tratamientos para que la producción sea óptima y de calidad.

En materia sanitaria esta zona de producción se vio afectada en 1999 por la presencia del virus de la mancha blanca (WSV por sus siglas en inglés) causando grandes estragos económicos en la industria, llegando a reducir la producción anual en el país a la tercera parte (Calderón, Mariño, & Landivar, 2002).

Así mismo, se debe de tener en consideración los cuidados del ambiente en donde estarán alojados los organismos de cultivo. Considerando lo anterior, la mejor herramienta es mantener el manejo adecuado de los estanques que a su vez permiten conservar la salud de los organismos de cultivo ya que de éste dependen una gran variedad de factores potenciales de estrés, que van desde la densidad y nutrición, hasta las concentraciones de amonio, nitritos, sulfuros, sólidos suspendidos y contaminantes (Abad, Betancourt, Vargas, & Roque, 2011).

Es de gran importancia, conocer que factores puedan afectar en los diferentes ciclos en que permanecen los organismos hasta su producción. Estos agentes pueden ser regulados de tal forma que nos permita tener una mejor obtención del producto final, con un menor impacto ambiental.

El presente trabajo de titulación propone el análisis comparativo de parámetros ambientales con respecto a la producción de camarón en la camaronera Plumont Puerto el Morro-Guayas en donde pretende determinar los parámetros más críticos en la producción con un impacto mínimo ambiental.

CAPÍTULO I

1.1. Planteamiento del problema

La industria camaronera ha sido uno de los sectores de la acuicultura de más rápido crecimiento en América Latina. Sin embargo, al igual que otras industrias acuícolas, no está libre de controversias debido a los altos ingresos de países en vías de desarrollo, así como en países desarrollados.

Las preocupaciones están relacionadas con los impactos ambientales que involucra este crecimiento. "La sustentabilidad de este cultivo ha sido cuestionada debido a la auto-contaminación de las instalaciones, que ponen en riesgo los ecosistemas" (Cedeño, 2015).

Las técnicas y las aportaciones al proceso de producción del camarón de cultivo tienen pertinencia en el tipo y magnitud de los impactos ambientales y sociales dentro y fuera de las piscinas.

El proceso de producción en la acuicultura del camarón sugiere varios impactos potenciales en el medioambiente, los que pueden ocurrir en dos fases secuenciales. El primer grupo de impactos sucede en la ubicación, diseño y construcción de las piscinas; el segundo, durante la operación de las piscinas.

De acuerdo con Marín & Chang, (2009) los impactos ambientales de las operaciones de las camaroneras pueden incluir:

- Salinización de suelos e intrusión de agua salada en los acuíferos de agua dulce.
- Asentamiento de tierras por extracción de agua subterránea.
- Desviaciones de flujos por taponamiento de las piscinas.
- Descarga de efluentes con desechos y alimentos de camarones, químicos usados en el control de pestes, desinfección y estimulantes de crecimiento.
- Captura incidental en la recolección de Postlarvas silvestres
- Introducción de nuevas especies y enfermedades en el ecosistema.

La sustentabilidad de la industria de la maricultura del camarón puede ser lograda sólo siguiendo lineamientos adecuados y dirigidos al desarrollo de una industria viable, manteniendo un ecosistema adecuado y saludable, que asegure una fuente sustentable de semilla y adecuada calidad del agua.

Sin una selección de sitio, diseño y manejo adecuados, las operaciones de las camaroneras probablemente fracasarán. Esto impacta la sustentabilidad en el largo plazo, en aquellos suelos costeros que seguramente habrán sido degradados, el financiamiento habrá sido asegurado y perdido, las concesiones habrán sido otorgadas, y los impactos al medio ambiente y a las comunidades habrán ocurrido sin beneficio económico (Tobey, Clay, & Philippe, 1998).

1.2. Formulación y sistematización del problema

Como lo indica Comas, Medina, Nogueira, & Sosa, (2013): "La formulación del problema debe interrelacionar las variables que interactúan, ser novedoso, factible y pertinente, fundamentado en una fuerte concepción teórica, y establecido de forma clara, sencilla y sin ambigüedad", se hace necesario formularnos el problema tal modo que responda a nuestras interrogantes claramente identificadas.

De acuerdo con lo señalado, se puede realizar la siguiente formulación en base al objeto de estudio: ¿Es posible determinar la producción del camarón mediante el uso adecuado de estrategias que manejen parámetros ambientales relacionados al correcto desarrollo del organismo, en la camaronera PLUMONT S.A. Puerto El Morro, de la provincia del Guayas?

1.3. Objetivos

1.3.1. Objetivo general

Analizar parámetros ambientales dentro del proceso de producción de camarón mediante análisis físicos químicos y biológicos.

1.3.2. Objetivos específicos

- Identificar el nivel óptimo de los parámetros físicos y químicos (pH, alcalinidad, nitritos, nitratos y fosfatos), de los estanques de producción bajo la actual legislación ambiental.
- Analizar el tipo de suelo donde están ubicados los tres estanques y determinar su permeabilidad.
- Realizar un análisis comparativo entre 3 estanques durante el proceso de producción de camarón en base a los parámetros de Oxígeno Disuelto, Temperatura, Turbidez y Salinidad.
- Proponer una guía de manejo de la camaronera para obtener máxima producción y mínimo impacto ambiental.

1.4. Hipótesis

Existe incidencia de los parámetros ambientales con respecto a la producción de camarón en los estanques 6, 7 y 30 en base a las variables fisicoquímicas.

1.5. Justificación

El camarón es actualmente el segundo producto no petrolero de mayor exportación, después del banano. Mediante los problemas que acarrea la economía ecuatoriana con la baja de ingresos petroleros, es menester explotar otros productos que son apetecidos por su gran variedad y calidad en el mercado internacional.

La industria camaronera ha tenido por historia un desarrollo importante debido a las condiciones de nuestro país que permite que sea exportador de camarón. A pesar de que, en el año 2000, cuando el virus de la mancha blanca redujo la producción camaronera del país, el sector tuvo una disminución de un 30% y solo unas 1200 fincas decidieron continuar con esta actividad productiva.

En el proceso de producción de camarón, el alimento que consumen, pero no retienen en su cuerpo, termina siendo un desecho. A medida que esos desechos se acumulan, florecen bacterias que consumen el oxígeno disponible. Esto puede sofocar a los camarones y limitar su crecimiento.

Los productos de desechos intermedios (tanto de los camarones como de los microbios) como el amoniaco y el nitrito, son tóxicos para los camarones, los peces y otros animales. Los camarones debilitados por los desechos y la falta de oxígeno tienen más probabilidades de enfermar. Para evitar este problema, se extrae periódicamente el agua del estanque y se llenan los estanques con agua limpia. Este sistema produce la contaminación de las aguas superficiales cercanas a los estanques.

Entre los cambios físicos relevantes a la actividad agrícola que se visualizan bajo los escenarios climáticos más comunes figuran: aumento en las temperaturas atmosférica y del suelo, alteraciones en las concentraciones de CO2 en la atmósfera, alza del nivel del mar, cambios en el ciclo hidrológico así como en la calidad del agua y su disponibilidad, intensificación y aumento de eventos climáticos extremos (sequías e inundaciones), y modificaciones en el nivel altitudinal de los puntos de rocío, entre otros (Vergara, Rios, Trapido, & Malarín, 2014).

Esta actividad también provoca la salinización de los acuíferos y de las tierras agrícolas costeras. Cuando los estanques son abandonados debido a enfermedades

u otras causas, el área queda a menudo convertida en un erial y sus suelos contienen altos niveles de salinidad, acidez y sustancias químicas tóxicas, que prácticamente la inhabilitan para otros usos.

1.6. Delimitación

La camaronera PLUMONT está conformada por 31 piscinas o estanques de producción con 179.03 ha y 10 Estanques o Pre-criaderos con 11.26 ha, pertenecientes al Grupo Ecuacultivo S.A, de propiedad del Sr Carlos Benjamín Rosales Pino; esta se encuentra ubicada en El Morro sitio Estero Lagarto S/N, provincia del Guayas. (Supercias, 2019).

1.7. Operacionalización

Tabla 1. Cuadro de operacionalización de variables.

Variables	Dimensiones	Indicadores	Técnicas y/o Instrumentos
VD Producción del camarón. Nos indicará los valores finales de alta o baja densidad numérica en base a la producción del organismo.	Resultados de la producción del camarón.	Producción en peso (libras) del camarón por un período.	
VI Parámetros ambientales. Factores que harán influencia directa en el desarrollo del organismo.	Factores ambientales	TemperaturaSalinidadTurbiedadOxígenoPH	 Recolección de información. Medición de parámetros in situ. Recolección de muestras análisis fisicoquímico

Fuente: (Freire, 2019)

CAPÍTULO II

2.1. Antecedentes

El camarón es el segundo marisco más comercializado del mundo en términos monetarios. Los camarones se cultivan y exportan principalmente de países asiáticos a las economías desarrolladas (FAO, 2018).

Una de las preocupaciones que siempre ha tenido la cría del camarón es la competencia por la tierra y también la afectación al medio ambiente, esto debido a que a diferencia de la agricultura de algas, moluscos y sus similares, generan desechos y producen un impacto en las aguas donde estás se cultivan formando cambios en el hábitat acuático, tal como lo indica (Sivaraman, Krishnan, & Radhakrishnan, 2019).

De acuerdo con, Sivaraman, Krishnan, & Radhakrishnan, (2019), el cultivo del organismo da lugar a una gama de impactos en lo que se refiere al tema ambiental; así como también lo citan varios autores, estos pueden ser:

- La degradación de los manglares.
- Los efectos ecotoxicológicos en los manglares.
- Deterioro de la calidad del agua.
- Salinización interior de los estanques.

Además de, Brotes de enfermedades y problemas sociológicos como conflictos por el uso del agua y restricciones de acceso.

"Entre las características del suelo, la distribución del tamaño de partícula, el pH y la concentración de materia orgánica son las más importantes" (Boyd C., 2015)

Con respecto a la calidad del agua y como nos dice (Sivaraman, Krishnan, & Radhakrishnan, 2019), mantenerla de forma óptima y reducir el intercambio de la misma, reduce la liberación del exceso de nutrientes al medio ambiente; "Más del 92% de los agricultores habían mantenido la calidad del agua del estanque: pH entre 7,5 y 8,5, salinidad entre 15 y 25 partes por mil y oxígeno disuelto entre 5 y siete partes por millón" (p15).

Existen importantes consecuencias en lo que se refiere a los temas económicos, sociales y ambientales; esto es debido al aumento de la salinidad lo que conlleva a

una amenaza en la viabilidad de numerosas comunidades rurales, como lo cita (Chand et al., 2015).

La salinidad juega un papel crítico en el desarrollo de huevos, embriones y larvas durante el ciclo de vida. En su entorno natural, las hembras grávidas migran a través de gradientes salinos hacia el estuario aguas abajo para incubar sus huevos y el desarrollo de las larvas se lleva a cabo en agua salobre (p2).

Por otro lado, Islam & Tabeta, 2019 argumenta que la intrusión de salinidad debido a la cría de camarones se considera la principal preocupación, ya que tiene diversos efectos sobre economía de la población local y el medio ambiente local" (p8).

Así mismo Chand et al., 2015, nos indica que:

La temperatura, el pH, el oxígeno disuelto y la salinidad se determinaron directamente mediante un instrumento de análisis de agua digital; mientras que el nitrógeno amoniacal (NH3-N) y el nitrógeno nitrato (NO2-N) se midieron utilizando un espectrofotómetro HACH. La alcalinidad y la dureza se midieron por titulación (p3).

A causa de ciertos factores tales como, altas ganancias, demanda del camarón en el mercado internacional, nueva generación de empleo, entre otros, hicieron que se tenga más participación en esta área a nivel empresarial; es así que (Islam & Tabeta, 2019) hace la siguiente cita: "Las iniciativas del sector privado, incluida la participación de corporaciones multinacionales, atrajeron a agencias de desarrollo nacionales e internacionales para expandir la acuicultura del camarón en el país" (p1).

Por otra parte, Islam & Tabeta, 2019 nos dice: "La mayor parte de la investigación en el campo del cultivo de camarones se centra en el estudio científico del cambio ambiental o en conflictos sociales creados por el cultivo comercial..." (p3). Estos aplican métodos de investigación de forma cuantitativa.

El almacenamiento de los camarones, fertilizantes, alimentos, mano de obra para el manejo de la granja, cosecha y costo fijo, son los datos que citados por (Islam & Tabeta, 2019), son aquellos rubros que están involucrados al costo para la producción.

La camaronera PLUMONT S.A es una empresa perteneciente Grupo Ecuacultivo S.A, la cual desarrolla sus actividades en Ecuador, dentro de la provincia del Guayas

y se dedica a la actividad principal de la Cría de Moluscos; con un excelente personal capacitado tanto en la parte técnica como en la administrativa, cuenta con más de 20 años de experiencia en el mercado (EMIS, 2019).

Entre una de sus otras actividades comerciales que en los últimos tiempos ha tenido mayor auge, es la producción de camarón. En esta acción, la empresa se dedica la crianza, control y producción del camarón y así mismo, en todos los derivados que se desarrollan a lo largo del proceso. Sus instalaciones están conformadas por 31 piscinas o estanques de producción con 179.03 ha y 10 Estanques o pre criaderos con 11.26 ha.

El control que deben sostener para tener un buen producto (camarón) es bastante importante y minucioso, debido a lo delicado que resulta la crianza de las larvas y así mismo todo el proceso que conlleva el desarrollo de esta. Si no se tienen ciertas consideraciones importantes, el producto será de mala calidad o de la misma forma, no se tendrá una buena producción de tal modo que no podrá existir un margen de utilidad beneficioso.

Además de ello existen otros factores o parámetros que nos ayudarán a tener un control del organismo desde sus fases iniciales hasta su producción, permitiéndonos predecir un futuro riesgo o beneficio; todo esto depende de la atención que se tenga en estos indicadores.

Las camaroneras utilizan como materia prima básicamente la larva de camarón, que es alimentada semanalmente. Dependiendo de la hectárea que conforma cada piscina se procede a sembrar la materia prima. En esta fase de preparación se requiere mantener adecuadamente las instalaciones y llevar el control adecuado para la exclusión de organismos patógenos que pudieren perjudicar los intereses de la empresa (Cedeño, 2015).

Dentro de los factores de cuidados también influye la parte ambiental, debido a que pueden generar bacterias que causen enfermedades en el organismo, tal como lo indica (Abad, Betancourt, Vargas, & Roque, 2011):"...el establecimiento de una infección puede no deberse únicamente al aumento en el número de agentes patógenos y a la susceptibilidad del hospedero, sino que también depende en gran

medida del efecto del ambiente en la proliferación del patógeno y en la fisiología del organismo" (124).

Todos estos indicadores deben de ser tomados en cuenta durante el proceso, ya que nos dirán en términos de porcentaje, cuanta afectación tendremos al final de la producción. De esta manera, se podrá establecer niveles o rangos en los cuales, el producto final se verá afectado o no, sin salirse de los parámetros de calidad o normas establecidos dentro de la empresa.

Este análisis nos ayudará a tomar decisiones en base a los cuidados o la variabilidad de estos factores en base al costo beneficio que puedan generar los mismos.

2.2. Marco teórico

2.2.1. Camarón

La definición de Bioenciclopedia, (2015) acerca del camarón lo menciona de la siguiente manera:

El término "camarón" se aplica a varias especies de crustáceos emparentados con los cangrejos y las langostas. La palabra a veces se toma como sinónimo de "**gamba**" ya que no es un término formal o científico, pero en algunos países se les diferencia por ciertos aspectos. Por ejemplo, muchos crustáceos llamados gambas son más grandes, y en algunas partes solo se llama camarón a las especies marinas (párr1).

Bioenciclopedia, (2015) también nos explica que "Todos los camarones cuentan con un **caparazón articulado de quitina**, una especie de cáscara gruesa que protege las branquias a través de las cuales obtienen oxígeno" (párr3).

2.2.2. Industria camaronera

Las industrias camaroneras son las encargadas de realizar el proceso de crianza del camarón hasta su producción, incluyendo otros elementos propios de cada industria.

De acuerdo con Salgado, (2014): "En 1970 se inició la "revolución azul", que consistió en la expansión de la acuicultura a nivel mundial. Es decir, el cultivo de especies acuáticas, vegetales o animales, en agua dulce o agua de mar" (p57). Sin embargo,

entre la década de 1980 y 1990 surgió el boom de las empresas camaroneras de forma rápida; así mismo, se produjo una creciente destrucción de manglares en América Latina, el Caribe y Asia (Salgado, 2014).

En nuestra región ecuatoriana, "La industria camaronera ha tenido por historia un desarrollo importante debido a las condiciones de nuestro país que permite que sea exportador de camarón" (Bernabé, 2016).

El éxito de la industria camaronera fue posible a costa de la deforestación de los bosques de manglar, del empobrecimiento de las comunidades rurales costeras y de la destrucción y contaminación de recursos naturales. No obstante, esta industria siempre ha recibido el apoyo del gobierno y de organismos financieros internacionales; se trata de una actividad muy rentable que, generalmente, es propiedad de empresarios y de grupos económicos de poder (Salgado, 2014).

"Para el sector camaronero, el fracaso colectivo puede ser el único escenario previsible, si los actores directos e indirectos del recurso no dan origen a formas de acción colectiva, instituciones y mecanismos solidarios destinados a preservarlo" (Uzcátegui, Solano, & Figueroa, 2016).

Salgado, (2014) da indicadores entre los años 1991 hasta 2013, en referencia a la exportación del camarón en Ecuador, lo cual refleja un crecimiento bastante considerable.

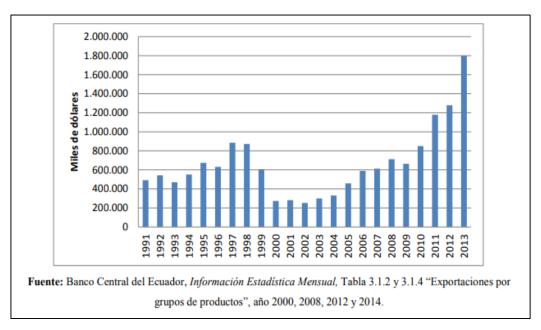


Figura 1. Exportación ecuatoriana del camarón 1991 – 2013

Fuente: (Salgado, 2014)

En la actualidad, existen varias empresas dedicadas a este sector comercial, desde pymes hasta grandes industrias y con una amplia trayectoria. Estos han sobrevivido a muchas etapas a lo largo del tiempo, tanto en el sector ambiental como los fenómenos climáticos, así como financieros y/o estatales.

Figura 2. Especiales comerciales en el Ecuador

Fuente: (Zambritisa, 2018)

2.2.3. Cultivo del camarón

Debido a que el camarón como tal, representa muchos cuidados para su crianza y cultivo, y en este proceso intervienen factores cruciales para su desarrollo, destacándose entre ellos el ambiental, es necesario regirse a normas o procedimientos para realizar tal fin de una forma más segura.

De acuerdo con Rojas, Haws, & Cabanillas, (2005): "El desarrollo de buenas prácticas de manejo en el cultivo de camarón (BPM) surge ante la necesidad de alcanzar mayores niveles de eficiencia en la producción de camarón y como resultado de la toma de conciencia por parte de los productores de camarón de que ciertas prácticas de cultivo aún en uso son dañinas para los ambientes naturales en donde se desarrolla esta actividad" (p9).

Estas buenas prácticas deben estar integradas con la parte ambiental, así como lo explica (Cuéllar, Lara, Morales, & Abelardo, 2010).

La camaronicultura sostenible debe estar enfocada hacia el desarrollo de sistemas de cultivo en forma integrada, ordenada e incluyente, articulando las capacidades económicas, ambientales y sociales con la tecnología, el conocimiento, los esfuerzos institucionales y el marco jurídico normativo. Bajo esta orientación, las granjas tienen una responsabilidad en la implementación de la gestión ambiental definida en el Estudio de Impacto Ambiental, desde la fase de construcción y durante su establecimiento y operación (p19).

Existen parámetros que nos ayudan a medir las condiciones donde se desarrollan en sus diferentes etapas. Estos pueden ser controlados para garantizar un excelente producto al final del proceso; así mismo, nos da una organización de aquellos factores que producen un aspecto negativo en la producción.

Mencionamos que debemos controlar el medio en el que habitan. Los estanques en donde estamos haciendo nuestro cultivo ya sea de tilapia o de camarón blanco, para ello los parámetros a cubrir son: Salinidad, turbidez, oxígeno disuelto, potencial de hidrogeno (pH), Alcalinidad, dureza, compuestos nitrogenados y fosfatos (Rojas, Haws, & Cabanillas, 2005).

2.2.3.1. Tipos de sistemas

En el Ecuador existes tres tipos de sistema de producción: extensivo, semiextensivo, e intensivo, estos se clasifican según el área (ha) disponible, inversión económica, y por libras cosechadas por hectárea en un año - lb/ha/año (Schwarz, 2005).

De acuerdo con Ordóñez, (2015) existen 3 tipos de sistemas, los cuales se los ha detallado de la siguiente forma:

Tabla 2. Tipos de cultivos / características principales.

Tipo de Sistemas	Características Principales		
Extensivo	- Baja densidades: 10000-15000/m².		
	- No se alimentan con dietas formuladas.		
	- Producción promedio: 600 lb/ha/año.		
Semi-extensivo	- Densidades medias: 15000-120000/ m².		
	- Se alimentan con dietas formuladas		
	- Producción promedio: 1000 – 5000 lb/ha/año.		
Intensivo	- Densidades altas: más de 1200000 /m².		
	- Se alimentan con dietas Formuladas		
	- Producción Promedio: mayores a 5000 lb/ha/año		
	Fuente: (Freire, 2019)		

Fuente: (Freire, 2019)

PLUMONT S.A opera bajo el sistema de producción Intensivo, siendo un productor a gran escala y alto poder económico de inversión por corrida de producción, implementa tecnología, sistemas y programación en alimentación, crecimiento y mejora en características del camarón, sistemas computadorizados, paneles solares, cosechadora de camarón que permite tener mayor eficiencia y resultados finales en cantidad de camarón en producción.

2.2.4. Calidad de agua

La calidad del agua influye de forma considerable en el proceso de crianza del organismo. Los factores que en ella se visualiza hacen que se realice un mayor

esfuerzo o consideraciones en ciertos procesos para finalmente tener una mejor producción.

Las especies de camarón de aguas cálidas crecen mejor a temperaturas entre 25 °C y 32 °C. Estos rangos de temperatura a lo largo del año son característicos de las aguas costeras en los trópicos. En áreas subtropicales la temperatura puede descender por debajo de los 25 °C durante semanas o meses, por lo que los camarones no crecerán bien. Mientras que en el trópico es común obtener dos ciclos de cultivo al año, en algunas áreas subtropicales se obtiene uno y en otras son posibles dos ciclos (Boyd C., 2017).

Por ello Hernández, (2016) hace referencia a los principales factores o parámetros de calidad sobre el agua para tener un buen crecimiento y sobrevivencia del camarón, y estos son: salinidad, temperatura, oxígeno disuelto, pH, sustancias y partículas disueltas, alcalinidad, turbidez, la materia orgánica y nutrientes particularmente el nitrógeno y el fósforo, así como sus compuestos metabólicos.

2.2.5. Parámetros de calidad

2.2.5.1. Temperatura

La temperatura tiene alto impacto en los procesos químicos y biológicos. Los procesos biológicos como crecimiento y respiración se duplican, en general, por cada 10 °C que aumenta la temperatura. Esto significa que el camarón crece dos veces más rápido y consume el doble de oxígeno a 30 °C que a 20 °C, por lo que el requerimiento de oxígeno disuelto es más crítico en temperaturas cálidas que en las frías (Boyd C., 2017).

Estos valores dan a notar la importancia que se tiene al poder controlar los niveles de temperatura dentro las piscinas donde se encuentran los organismos; "Las reacciones químicas en su agua y suelo se incrementan también conforme aumenta la temperatura. Por ello los factores ambientales, y en particular las variables de calidad del agua son más críticos conforme aumenta la temperatura" (Boyd C., 2017).

2.2.5.2. pH

De acuerdo con Zamora, (2009): "Se le define como el logaritmo negativo de la concentración de iones hidrógeno" (p127). Se expresa mediante la fórmula pH = -log [H⁺].

Hernández, (2016) expresa que: En los estanques de cultivos, el pH suele ser menor en la mañana debido a los cambios en la fotosíntesis del fitoplancton, dicha fluctuación suele ser mayor cuando el fitoplancton es abundante y suele ser menor en estanques con alta alcalinidad debido a la capacidad de amortiguación (p13).

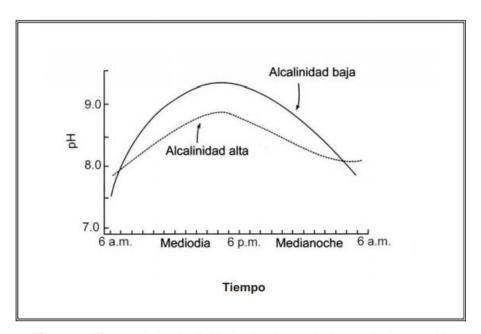


Figura 3. Efectos de la alcalinidad sobre las variaciones diarias en pH.

Fuente: (Boyd C., 2017)

2.2.5.3. Fotosíntesis y respiración

Muchos de los organismos como plantas y animales tienen una relación de dependencia con la respiración y la fotosíntesis. En ciertos casos, una afecta o tienen sus consecuencias con la otra:

La materia orgánica se combina con el oxígeno (oxidación) al liberar agua, dióxido de carbono y energía. Las células de plantas y animales tienen la capacidad de capturar algo de la energía liberada mediante la oxidación y utilizarla en sus procesos biológicos, el resto de la energía se pierde como calor (Boyd C., 2017).

Así mismo, Boyd C, (2017) dice que "Desde el punto de vista ecológico, la respiración es lo opuesto a la fotosíntesis: C6H12O6 + 6O2 6CO2 + 6H2O + calor energético".

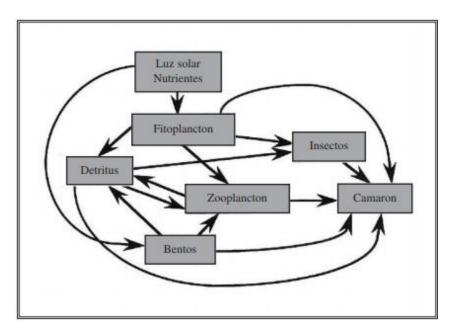


Figura 4. Cadena alimenticia de un estanque.

Fuente: (Boyd C., 2017)

Cuando la fotosíntesis es más rápida que la respiración el oxígeno se acumula y el dióxido de carbono disminuye en el agua del estanque. Esta es la situación normal durante el día; por la noche la fotosíntesis se detiene, pero la respiración continúa, por lo que el oxígeno disminuye y el dióxido de carbono se incrementa (Boyd C., 2017).

2.2.5.4. Sustancias y partículas disueltas

Boyd C, (2017) indica: "Hace falta una gran cantidad de elementos para el crecimiento del fitoplancton. La mayoría de las especies requieren al menos carbón, hidrogeno, oxigeno, nitrógeno, sulfuro, fósforo, cloro, bromo, molibdeno, calcio, magnesio, sodio, potasio, zinc, cobre, hierro y manganeso" (p4).

En base a otros elementos considerados como nutrientes, (Boyd C., 2017) nos expresa que el fósforo y el nitrógeno son considerados como principales limitantes en lo que se refiere al crecimiento del fitoplancton. "Los estanques se fertilizan para contrarrestar la falta natural de nitrógeno y fósforo. Después del nitrógeno y fósforo, la siguiente limitante de la productividad es el carbón" (Boyd C., 2017).

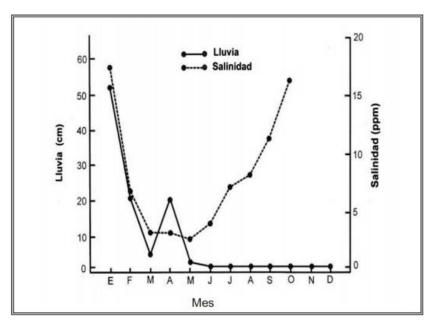
Así mismo, Boyd C, (2017) menciona que: "La disponibilidad de carbono es particularmente baja en aguas ácidas y en aguas con un pH alto. La cal agrícola se utiliza para neutralizar la acidez y mejorar la alcalinidad y la disponibilidad de carbón en estanques ácidos" (p5).

Los camarones requieren de una concentración adecuada de iones para satisfacer sus necesidades de ósmosis, pero no tienen estrictos requerimientos de iones individuales. La concentración de oxígeno disuelto en el agua es para el camarón un factor crítico en su crecimiento, reproducción, supervivencia y tolerancia a las enfermedades (Boyd C., 2017).

Tabla 3. Formas y rangos deseados de varias substancias inorgánicas

Elemento	Forma En Agua	Concentración Objetivo
Oxígeno	Oxígeno molecular (O ₂)	5 – 15 mg/L
Hidrógeno	$H^{+}[-log(H^{+}) = pH]$	pH 7 – 9
Nitrógeno	Nitrógeno molecular (N ₂)	Saturación o menor
	Amonio ionizado (NH ₄ +)	0.2 - 2 mg/L
	Amonio no ionizado (NH ₃)	< 0.1 mg/L
	Nitrato (NO ₃ -)	0.2 – 10 mg/L
	Nitrito (NO ₂ -)	< 0.23 mg/L
Sulfuro	Sulfato (SO ₄ ²⁻)	500 – 3000 mg/L
	Sulfuro de hidrógeno (H ₂ S)	No detectable
Carbono	Dióxido de carbono (CO ₂)	1 – 10 mg/L
Calcio	Ion de calcio (Ca ²⁺)	100 – 500 mg/L
Magnesio	Ion de Magnesio (Mg ²⁺)	100 – 1500 mg/L
Sodio	Sodio (Na+)	2000 - 11000 mg/L
Potasio	Ion de Potasio (K+)	100 – 400 mg/L
Bicarbonato	Bicarbonato (HCO ₃ -)	75 – 300 mg/L
Carbonato	Carbonato ionizado (CO ₃ ²⁻)	0 – 20 mg/L
Cloro	Ion cloro (Cl ⁻)	2000 – 20000 mg/L
Fósforo	Ion fosfato (HPO ₄ ²⁻ , H ₂ PO ₄ -)	0.005 - 0.2 mg/L
Silicio	Silicato (H ₂ SiO ₃ , HSiO ₃ -)	2 – 20 mg/L
Hierro	Hierro ferroso (Fe ²⁺)	0 mg/L
	Hierro férrico (Fe ³⁺)	Trazas
	Hierro total	0.05 - 0.5 mg/L
Manganeso	Ion manganeso (Mn ²⁺)	0 mg/L
	Dióxido de manganeso (MnO ₂)	Trazas
	Manganeso total	0.05 - 0.2 mg/L

Ion Zinc (Zn ²⁺)	< 0.01 mg/L
Zinc total	0.01 – 0.05 mg/L
Ion cobre (Cu ²⁺)	< 0.005 mg/L
Cobre total	0.005 – 0.01 mg/L
Borato (H ₃ BO ₃ , H ₂ BO ₃)	0.05 - 0.1 mg/L
Molibdato (MoO ₃)	Trazas
Total, de todos iones	5000 – 35000 mg/L
	Zinc total Ion cobre (Cu ²⁺) Cobre total Borato (H ₃ BO ₃ , H ₂ BO ₃) Molibdato (MoO ₃)


Fuente: (Boyd C., 2017)

2.2.5.5. Salinidad

La salinidad es la concentración total de los iones disueltos. La salinidad depende básicamente de siete iones, cuyo valor promedio de concentración en el agua de mar es: Sodio, 10,500 mg/L; Magnesio, 1,450 mg/L; Calcio, 400 mg/L; Potasio, 370 mg/L; Cloruro, 19,000 mg/L; Sulfato, 2,700 mg/L; Bicarbonato, 142 mg/L (Boyd C., 2017).

Como concepto, Velasquez & Carchipulla, (2018) dice: "La salinidad corresponde a la concentración de todos los iones disueltos en el agua. Cuando la composición relativa de las sales es más o menos constante, la concentración total puede ser estimada de acuerdo con la concentración del ion dominante" (p11).

La salinidad en las aguas estuarinas puede ser similar a la del agua dulce durante la época de lluvia y aumentar durante la sequía. Los estuarios con acceso limitado al mar tienen mayor salinidad que éste durante la temporada de sequía ya que los iones se concentran a causa de la evaporación. La salinidad disminuye conforme se aleja de la boca del estuario, y la salinidad puede estratificarse de acuerdo con la profundidad en el estuario (Boyd C., 2017).

Figura 5. Variabilidad anual en lluvia y salinidad en una camaronera en Ecuador Fuente: (Boyd C. , 2017)

Aunque otras especies pueden ser cultivados exitosamente en estanques costeros con salinidad entre 1 y 40 ppm, se produce mejor con una salinidad superior a 5 ppm y la mayoría de los granjeros la prefieren entre 20 y 25 ppm.

2.2.5.6. Alcalinidad

"La alcalinidad usualmente es el resultado del bicarbonato (HCO₃-) y el carbonato (CO₃-) provenientes de la disolución de la roca caliza, el silicato de calcio y el feldespato" (Boyd C., 2017).

Rojas, Haws, & Cabanillas, (2005) nos dice que, "Corresponde a la concentración de bases totales en el agua, es expresada en mg/L de carbonato de calcio equivalentes y ésta representado por iones de carbonato y bicarbonato".

2.2.5.7. Oxígeno disuelto

Boyd C, (2017) menciona la siguiente referencia:

El oxígeno disuelto es la variable más crítica para la calidad del agua en un estanque. Los granjeros deben entender muy bien qué factores afectan la concentración de oxígeno disuelto en el agua y cómo influye una baja concentración de oxígeno disuelto en el camarón (p12).

2.2.5.8. Nitrito

Basados en el concepto de Boyd C, (2017) al que hace referencia:

En altas concentraciones, el nitrito se combina con la hemocianina en la sangre de los camarones y reduce drásticamente la capacidad de la sangre para transportar oxígeno. En cultivos semi-intensivos, son pocas las ocasiones en las que el nitrito es superior a 1 ó 2 mg/L y la toxicidad no es un problema. Sin embargo, sí ha habido reportes de toxicidad por nitrito en estanques intensivos (p27).

2.2.5.9. Turbidez

"El disco Secchi está pintado con cuadrantes alternos de negro y blanco y tiene 25 centímetros de diámetro. Bajo el disco hay un peso y desde su centro emerge una cuerda con medidas calibradas" (Boyd C., 2017).

La visibilidad del disco Secchi es la profundidad a la cual el disco Secchi deja de ser visible (Rojas, Haws, & Cabanillas, 2005), obviamente hay que tener cuidado para estandarizar el procedimiento utilizado en la lectura del disco.

Figura 6. Visibilidad del Disco Secchi en una camaronera Fuente: (Hernández, 2016)

Tabla 4. Medidas de lecturas del Disco Secchi

Profundidad (cm)	Condición del Florecimiento del Plancton
<25 cm.	Estanque demasiado turbio.
	Si es turbio por fitoplancton, habrá problemas de concentración baja
	de oxígeno disuelto por la noche o antes de la salida del sol.

	Cuando la turbidez resulta por partículas suspendidas de suelo la
	productividad será baja.
25-30 cm.	Turbidez llega a ser excesiva.
30-45 cm.	Si la turbidez es por fitoplancton, el estanque está en buenas
	condiciones.
45-60 cm.	Fitoplancton se vuelve escaso
>60 cm.	El agua demasiado clara
	La productividad es inadecuada y pueden crecer plantas acuáticas
	en el fondo de los estanques.

Fuente: (Rojas, A.A., Haws, M.C. y Cabanillas, J.A. ed. (2005).)

En muchas aguas existe una relación directa entre la visibilidad del disco y la abundancia de plancton: a medida que aumenta el plancton, la visibilidad disminuye. Sin embargo, a veces la turbidez es causada por partículas suspendidas de arcilla o detritus y no por la cantidad de fitoplancton (Boyd C., 2017).

2.2.6. Topografía

El suelo desempeña un papel importante en los estanques. El suelo libera tanto nutrientes, como materia orgánica y es un medio para el desarrollo de organismos bénticos y bacterias asociadas. Estos organismos pueden ser una fuente de alimento para los camarones, reciclan los nutrientes y degradan la materia orgánica (Boyd C., 2017).

El estudio del suelo también juega un papel muy transcendental dentro de la industria camaronera. Los niveles de producción también están orientadas a las formas o dimensiones de los estanques, obedeciendo así a las condiciones topográficas del terreno.

Muchos estanques se construyen en terrenos bajos anegables, por lo que el conocimiento de los patrones de inundación es crítico. Las inundaciones y la erosión de los terraplenes y el depósito de sedimentos (erosionados de los alrededores de la camaronera), pueden causar pérdidas en taludes y bordes de los estanques, destrucción de los caminos de acceso y daño y sedimentación de los canales (Cuéllar, Lara, Morales, & Abelardo, 2010):

También Cuéllar, Lara, Morales, & Abelardo, (2010) hace hincapié en que "La industria camaronera, gracias al avance de la tecnología, ha ampliado la posibilidad

de utilizar no sólo las áreas de albinas, sino también áreas arenosas y tierras dulces para la localización de las granjas" (p21).

El suelo debe de cumplir con ciertas características, así como lo expresa (Cuéllar, Lara, Morales, & Abelardo, 2010): "Los suelos potencialmente ácidos y con sulfatos deben ser excluidos en la selección para la construcción de camaroneras. Sin embargo, los suelos moderadamente ácidos pueden ser tratados para mejorar su Ph, mediante el proceso de encalado con Carbonato de calcio" (p22).

De la misma forma:

Otra característica importante para la selección del sitio es el contenido de materia orgánica del suelo. Cuando este es orgánico, no deberá ser usado para la construcción de estanques, por la dificultad del movimiento de tierra, compactación y los consecuentes problemas que se presentaran en el proceso productivo debido al ph ácido (Cuéllar, Lara, Morales, & Abelardo, 2010).

2.2.7. Descripción del proceso de producción en la camaronera PLUMONT S.A

Proceso de producción o nuevo ciclo de producción de camarón (litopenaeus vannamei), está conformado entre 110 y 130 días con 9 fases que son: secado del suelo, siembra de larvas (pre criadero), ingreso de agua, trasferencia, tratamiento del suelo, manejo de agua y suelo, aireación, alimentación, cosecha y trasporte las cuales se han venido implementado a través de los años como método de producción en la camaronera PLUMONT S.A.

2.2.7.1. Secado del suelo

Una vez realizada la última cosechada se da inicio al nuevo ciclo de producción, se realizan análisis de suelo, achicamiento de posas de agua, retiro y confirmación de la no existencia de organismos biológicos (peces), ni filtradores en el suelo (almejas y mejillones), se estima de 15 a 20 días para realizar un buen secado es necesario exposición de luz solar, a mayor temperatura mayor exposición de luz solar más rápido será el secado del suelo (Boyd K. P., 2005).

Una vez realizado los análisis químicos y bacteriológicos, se adecua con fertilizantes, encimas y pro-bióticos BIOBAC A para enriquecer el suelo de nutrientes.

2.2.7.2. Siembra de larvas

Mientras se prepara el suelo en el tiempo de secado, por programación logística y administrativa se realiza la siembra de larva en un estanque de menor tamaño denominado PRECRIADERO, La larva llega de diferentes tipos de laboratorios, estas se aclimata según la salinidad actual a que la que será sembrada, este parámetro varía según la época del año (Cuéllar, Lara, Morales, & Abelardo, 2010).

La larva es retirada de la funda y sembrada en el precriadero al voleo, se toman parámetros de temperatura (° \mathcal{C}) para mejor control debe de ser mayor a 1.5 (° \mathcal{C}), se aclimatan y se sueltan en Los estanques de precriadero.

Se procede a la alimentación de la larva desde el primer día con un balanceado l4%lorica de tamaño pequeño y adecuado, se alimenta 3 veces al día y se suministra de forma manual, en sus primeros días tiende a asentarse en los filos del estanque, no se necesita de mucha profundidad de agua para que la larva comience a criar y poder crecer correctamente.

En el trascurso de los días se toman parámetros de control tanto en alimentación como tratamiento en el balanceado y salud para poder reforzar su sistema inmune si se encuentra correctamente y evitar posibles enfermedades como infecciones bacterianas (Cuéllar, Lara, Morales, & Abelardo, 2010).

Este proceso toma alrededor de 15 a 20 días, los cuales dependerá de la densidad de siembra y la época del año, alrededor de 600.000 a 1500.000 larvas / por hectáreas ganando un peso desde 0.15gr, 0.20gr, 0.50gr.

2.2.7.3. Ingreso de agua

Consiste en el ingreso de agua con 2 tipos de malla o filtros: malla roja larvera (visillo urano y) y malla nitex de 50 a 600 micras (ver anexo) para evitar la infiltración de predadores, una vez que obtenga un 30% a 40% de nivel de agua, se comienza a fertilizar la cual depende de los análisis químicos y bacteriológicos previamente

realizados, a baja materia orgánica mayor implementación de fertilizantes, encimas y pro-bióticos BIOBAC A.

En esta fase es necesario monitorear la calidad de agua que ingresa debido al tipo de bacterias, si son las bacterias Cianofitas o (*Cyanbacterias*) estas se proliferan de forma acelerada y requieren de mayor cantidad de nutrientes, para poder proliferan las Diatomeas que son las bacterias ideales para el cultivo de camarón (*Litopenaeus vannamei*) (Cuéllar, Lara, Morales, & Abelardo, 2010).

2.2.7.4. Transferencia

La trasferencia de larvas se realiza abriendo una de las compuertas del precriadero, donde se introduce una malla roja larvera, en la cual se pesca la larva con la ayuda de dos pescadores, que deben de estar ubicados dentro de la compuerta, posteriormente se recolecta en embaces plásticos donde se registra el peso y la cantidad de larvas que han sido recolectadas y las que serán sembrada (Cuéllar, Lara, Morales, & Abelardo, 2010).

Una vez recolectada y pesada la larva 3 trabajadores se movilizan en motos y de manera manual dispersar la larva, la cual puede durar alrededor de 2:30 minutos sin oxígeno.

2.2.7.5. Tratamiento de agua y suelo

Una vez en la piscina de engorde se cambia el balanceado, se alimentan 3 veces al día con Lorica I35%, y al pasar una semana se da inicio al control y peso del camarón para monitorear peso, tamaño y estado de salud de la especie.

Dependiendo del estado de salud de la especie de camarón se aplica los tratamientos adecuados para agua y suelo.

2.2.7.6. Manejo de agua y suelo

En esta fase el camarón comienza una mayor alimentación, existe mayor cantidad de materia orgánica, y se requiere de recambios de agua a diario, los niveles de agua se van incrementado a medida que va creciendo el camarón y a su vez se monitorea

parámetros físico, químicos, bacteriológicos y en caso de ser necesario (Cuéllar, Lara, Morales, & Abelardo, 2010).

2.2.7.7. Aireación

En esta fase se aplican aireadores de paleta y difusores de fondo, este sistema se encuentra conformado por 8 paletas distribuidas entre 4 estabilizadores Conectadas a un sistema denominado Tornado este tiene la función de ingreso de aire atreves del tuvo existente, la aireación y la mezcla tiene lugar debajo de la superficie de agua para evitar el rociado y salpicado de agua (Cervantes, 2019).

Con este sistema se obtiene resultados como: reducción de dolores, conservación de la energía, eliminación de problemas de congelamiento, este sistema se conecta a un motor a diésel de capacidad de 2hp, luego de la primera toma de parámetro de oxígeno disuelto en horas de la mañana se procede a encender los aireadores según el resultado de oxígeno disuelto será el tiempo de encendido de los aireadores (Cervantes, 2019).

2.2.7.8. Alimentación

Una vez que el camarón ha adquirido un peso de 3g, en esta fase existen dos tipos de alimentadores el MOOF MADAN y AQ1 SYSTEM, son dos tipos de sistemas de alimentación atomizada con diferentes características, permite mejorar la productividad, tener controles ambientales, tamaño y características finales en la especie del camarón (AQ1 SYSTEM, 2017).

MOOF MADAN, se base en el sistema de control tipo TIMER o temporizador, se programa una vez al día de forma manual o computarizada, está compuesto de un motor que permite el peso en Kg del alimento o balanceado, un motor de dispersión, y panel solar de 50W, este sistema de aplica durante el proceso de crecimiento en las piscina de engorde (Mecatronica Ecuador, 2018).

AQ1 SYSTEM, se basa en tecnología de detección acústica y óptica en tiempo real, el cual atreves de un sensor Hidrófono permite medir el masticar del camarón, se realiza la curva grafica atreves del sensor, es un programa automatizado, solo se recargan las tolvas con la cantidad de alimento o balanceado que el camarón va a

ingerir, se suministra el alimento dos veces al día durante el transcurso de la mañana y en horas de la tarde (AQ1 SYSTEM, 2017).

Tabla 5. Descripción de ventajas y características AQ1.

AQ1 SYSTEM	
Ventaja	Características
Mide la intensidad de	Capacidad de carga:
alimento del camarón.	600 kg de alimento o balanceado.
 Empareja la entrega de 	• <i>Hidrófono:</i> identifica
alimento con la intensidad de	el sonido de la alimentación.
alimentación perfectamente	
Mejora el FCR y	• FD100: Dosificador
crecimiento.	inteligente y difusor.
Puede identificar cuando el	• Software FS200:
camarón no requiere comer y evita el	sistema de monitoreo en línea.
sobreconsumo.	
Elimina los desperdicios de	• Software FS200:
alimento que generalmente tienen	Controla parámetros de
impactos negativos sobre la calidad	Oxígeno disuelto y Temperatura
del medio de cultivo y consecuencias	
sobre la salud del camarón.	
Sistema de alimentación	• Conexión de
24horas/7 días cuando el camarón lo	electricidad con paneles
requiere	solares, internet y reporte en
	línea y tiempo real.
(SLIMACIJA 2010	n)

(SUMACUA, 2019).

2.2.7.9. Cosecha y transporte

Siendo la fase final de la corrida de producción de camarón, se procede abrir la compuerta de salida poco a poco para bajar los niveles de agua, se coloca la maya y se conecta con la maquina cosechadora esta absorbe y transporta el camarón cosechado a las cajas térmicas BINS las cuales tienen una capacidad de 1000Lb c/u,

se adiciona agua de las piscinas y hielo por capas, se adiciona un saco de 25kg de Metabisulfito de Sodio (MBS) para conservar la cabeza del camarón (DMplast, 2019).

Luego que se concentra el Metabisulfito de Sodio Se procede a tomar parámetros de peso, talla y porcentaje de agua en el camarón, se realizan monitoreo de control como textura cada 30 minutos y Oxígeno disuelto en la piscina cada hora durante la cosecha, es importante tener en cuenta que el camarón no se encuentre mudando ya que esto afectaría a la cosecha (Cuéllar, Lara, Morales, & Abelardo, 2010).

2.2.8. Marco legal

 Tabla 6. Marco Legal aplicable para camaroneras.

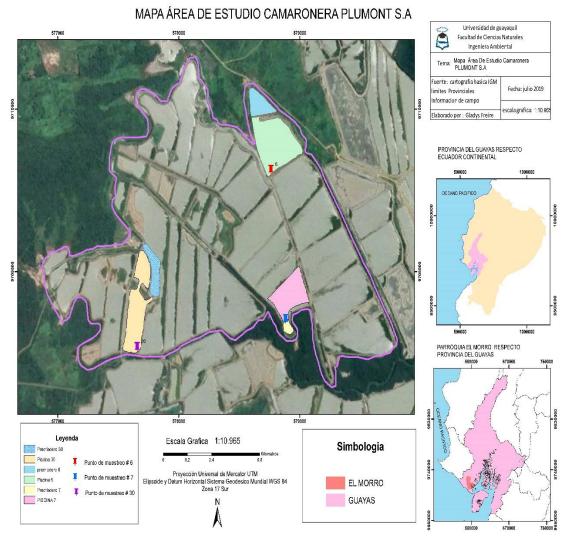
Registro Oficial	Normativa Legal
Registro Oficial 440, del 20 de octubre del 2008	Constitución de la República del Ecuador.
Registro Oficial Suplemento 983 de 12-abr 2017 Modificado el 21 de agosto del 2018.	Código Orgánico del Ambiente.
Ley de Gestión Ambiental Registro Oficial Suplemento # 418	Ley de Gestión Ambiental Para Prevención Y Control de la Contaminación Ambiental.
Texto Unificado de Legislación Ambiental Secundaria TULAS.	Libro VI Sobre Calidad Ambiental.
MAP-SRP-2018-0102-A	Ley de Pesca Y Desarrollo Pesquero.
Registro Oficial Nº 305 del 2014	Ley de Recursos Hídricos, Uso y aprovechamiento de Agua.
	Ley Orgánica de Conservación Y Restauración de Ecosistema Manglar del Ecuador.
	Código de Policía Marítimo y aquellas que se articulen a las Disposiciones de Salud e Higiene.

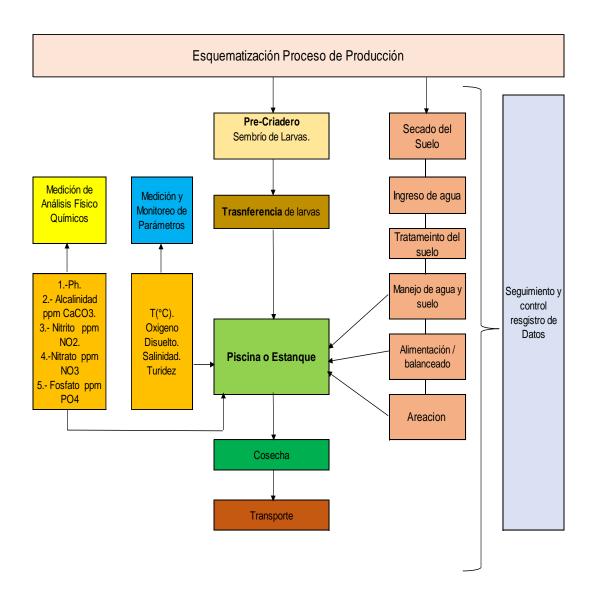
CAPÍTULO III

Desarrollo propuesta

3.1. Área de estudio

La camaronera PLUMONT está conformada por 31 piscinas o estanques de producción de camarón (*litopenaeus vannamei*) con 179.03 ha y 10 Estanques o Precriaderos con 11.26 ha, perteneciente al Grupo Ecuacultivos Ecuatorina de Cultivos S.A propiedad del Sr Carlos Benjamín Rosales Pino, se encuentra ubicada en El Morro sitio Estero Lagarto S/N (Supercias, 2019).




Figura 7. Mapa área de estudio camaronera PLUMONT S.A

Fuente: (Freire, 2019)

Para el desarrollo de la siguiente propuesta de titulación se escogieron los siguientes estanques/piscinas de producción de camarón:

Tabla 7. Coordenadas de ubicación estanques de producción.

Estanque / Piscina	На.	Coordenadas	
		Х	Υ
#6	8.09	578800	9709850
#7	5.5	578900	9708750
#30	5.5	577700	9708800

Figura 8. Mapa de esquematización de producción Camaronera PLUMONT. Fuente: (Freire, 2019)

3.2. Medición de parámetros in situ

Bajo la dirección técnica del Ing. Acuicultor Ronald Mejillones García, técnico respónsale de campo en la camaronera PLUMONT S.A, y del Sr Parametrista Luis Cedeño se realizó la medición de parámetros diarios como temperatura y oxígeno disuelto, también se realizaron controles semanales de turbidez y salinidad en cada piscina o estanque durante la producción de camarón.

Una vez realizada la toma de datos, se registran los datos en una bitácora en situ y luego son digitalizados en formato Excel.

Figura 9. Registro de Parámetros en bitácora. Fuente: (Freire, 2019)

		15/0	4/2019	
PISCINA /		PARÁ	METRO	
ESTANQUE	OX		Temp	
	am	pm	am	pm
#6	5.9	9.5	29.2	31.1
#7	4.2	9.6	29.4	31.0
#30	45	14 4	29.6	32 1

	2	22/06/	2019
PISCINA /	P.	ARÁN	IETRO
ESTANQUE	Turbidez		Salinidad
	CM	CL	PPM
#6	45	VA	25
#7	45	VO	25
#30	40	VO	28

Figura 10. Registros de Datos Excel. **Fuente:** (Freire, 2019)

3.2.1. Equipos de medición

Equipos.

- Oxigenómetro
- Salinómetro
- Disco Secchi

Figura 11. Oxigenómetro Pro20i. **Fuente:** (Freire, 2019)

Figura 12. Salinómetro Óptico.

Figura 13. Disco Secchi. **Fuente:** (Freire, 2019)

3.2.2. Oxígeno disuelto

La medición del oxígeno disuelto se realizó dos veces al día durante el proceso de producción de camarón (Litopenaeus vannamei), la primera toma de datos a las 4:30 am y la segunda toma de datos 4:30pm, utilizando el Oxigenómetro con unidades en mg/l (miligramos por litro) de agua.

3.2.2.1. Modo de uso

Se enciende el Oxigenómetro y se introduce en el estanque, se mueve paulatinamente para que se calibre automáticamente, se verifica en la pantalla que este en correcto estado calibración y se vuelve a introducir, se leen el parámetro de oxígeno disuelto y temperatura.

Figura 14. Toma de Datos Oxígeno Disuelto y Temperatura. **Fuente:** (Freire, 2019)

3.2.3. Temperatura (°C)

Para realizar la medición de la temperatura (°C) de igual manera se utiliza el Oxigenómetro, este instrumento tiene un electrodo que mide la sensación térmica en la misma muestra de agua, la toma de datos se registró a diario y dos veces al día durante todo el proceso de producción en las tres piscinas de producción durante la investigación.

Figura 15. Medición de Temperatura. **Fuente:** (Freire, 2019)

3.2.4. Salinidad

El registro de este parámetro se la realizo una vez a la semana en los tres estaques de producción de camarón (*Litopenaeus vannamei*). Para medir la salinidad se utilizó un Refractómetro manual óptico o también llamado Salinómetro.

3.2.4.1. Modo de uso

Se calibra el Salinómetro con agua destilada, luego se procede a observar que la medida se encuentre en cero, se toma una muestra de agua, se la introduce en el Salinómetro y se observa la concentración de sal en porcentaje (%) partes por millón (ppm) en una muestra de agua.

Figura 16. Medición de Salinidad. **Fuente:** (Freire, 2019)

3.2.5. Turbidez

Para determinar el resultado de este parámetro se utilizó un Disco Secchi de 25cm de diámetro, en el cual se trazaron dos líneas blancas de forma perpendicular y se pintaron los cuadros restantes de color negro, para finalmente adherir un peso para que el disco se introduzca en el agua.

Una vez que el disco se encuentra en el agua este realiza mediciones de cada 10 cm de largo, mientras es introducido lentamente en la piscina/estanques, cuando se pierde visibilidad en el disco secchi, este proceso se lo realiza una vez por semana en las dos piscinas/estanques de producción de camarón (*Litopenaeus vannamei*).

Figura 17. Toma de datos de Turbidez. **Fuente:** (Freire, 2019)

Figura 18. Visibilidad del Disco Secchi. **Fuente:** (Freire, 2019)

3.3. Medición de parámetros ex situ

Recolección de muestras de agua en los estanques de producción de camarón para muestreo de parámetros físico-químicos y determinar la medición de Ph (agua), Alcalinidad CaCO3 (ppm), Nitrito NO2 (ppm), Nitrato NO3 (ppm), Fosfato PO4 (ppm).

3.4. Muestreo

La toma de muestra se realizó en los tres estanques de producción en horas de la mañana el 16 de julio del 2019, siendo el área de estudio un ambiente cerrado se tomó dos muestras de agua por cada estanque como control de parámetros de producción.

Tabla 8. Puntos de Muestreo

Puntos de Muestreo			
Estanque	Coordenadas		
/ Piscina	X	Υ	
#6	578762	9709622	
#7	578883	9708705	
#30	577656	9708533	

Fuente: (Freire, 2019)

3.5. Trasporte de muestra

Recolectada las muestras de agua y en cadena de frio, se entregaron en el laboratorio de la Compañía Multinacional SKRETTING, empresa que brinda asesoría externa, monitoreo y control de parámetros de calidad y producción, calidad e inocuidad alimentaria, trazabilidad, análisis de riesgos en materia prima (Skretting, 2018).

Los laboratorios cuentan con certificación ISO 1725, y además certificaciones como ISO 22000 (Inocuidad de los Alimentos) y OHSAS 18001 (Sistemas de Gestión de la Seguridad y la Salud en el Trabajo).

3.6. Análisis de las muestras

Los parámetros analizados en las muestras de laboratorio son:

Tabla 9. Análisis de las muestras, Métodos Científicos.

Parámetro		Método Científico
рН	Potenciómetro	

	Fuentes (Stretting 2019)
Nitrato	HACH (Cadmium Reduction Method-8039)
Nitrito	Standard Methods. APHA, 1985 (Método de la sulfanilamida)
Amonio toxico	HACH, 2000 (Salicylate Method-8155)
	Titulométrico)
Alcalinidad	Standard Methods. APHA, 1992 (Método

Fuente: (Skretting, 2018)

3.7. Recolección de muestras de suelo

Se recolectan muestras de suelos en los estanques #6, #7, #30 para análisis granulométricos y de permeabilidad en los estanques de Producción. La recolección de las muestras consiste en la abertura de un orificio con una pala manual, se desechan los primeros centímetros de capa del suelo, y se recolectan muestras entre 0.50 y 0.60 centímetros de profundidad.

Tabla 10. Puntos de Muestreo

Muestras de Suelo			
Estanque	Coordenadas		
/ Piscina	X	Υ	
#6	578807	9709787	
#7	578912	9708845	
#30	577644	9708708	

Figura 19. Muestras de Suelo Fuente: (Freire, 2019)

Figura 20. Recolección de Muestras de Suelo Fuente: (Freire, 2019)

3.8. Levantamiento topográfico

Se realizó un levantamiento topográfico en los estanques de producción #6, #7, y #30 para obtener información in situ del área en hectáreas (ha), ubicación de compuertas de entrada y de salida, altura máxima de agua, pendiente trasversal y longitudinal.

Figura 21. Medición de Estanques, Levantamiento Topográfico. **Fuente:** (Freire, 2019)

Figura 22. Ubicación de Puntos en Compuertas de Entrada.

Figura 23. Ubicación de Puntos en Compuertas de Salida. Fuente: (Freire, 2019)

3.9. Datos de producción de camarón

3.9.1. Estanque #6

Sembrada el 13 de abril y cosechada el 04 de agosto del 2019, con un periodo de producción de 113 días y una cosecha total de 56000.00 Lb de Camarón y un consumo total de 42050 kg de balanceado.

Piscina #6			
Datos de Producción			
Cosecha Actual			
Fecha de Siembra:	13 de Abril del 2019		
Total de siembra:	1500000		
Total de Libras cosechadas:	56000		
Peso/ camarón	29 gr		
Liras producidas /ha:	6922.13		
Densidad:	185414.1		
Sobrevivencia:	64%		
Conversión:	1.65		
Total de aireadores	6		

Figura 24. Datos finales de producción Estanque 6

3.9.2. Estanque #7

Sembrada el 09 de abril y cosechada el 31 de julio del 2019, con un periodo de producción de 112 días y una cosecha total de 46000.00 Lb de Camarón y un consumo total de 35105 kg de balanceado.

Piscina #7			
Datos de Producción			
Cosecha Actual			
Fecha de Siembra:	9 de Abril del 2019		
Total de siembra:	700000.00		
Total de Libras cosechadas:	46000		
Peso/ camarón	31.5gr		
Liras producidas /ha:	9200		
Densidad:	140000		
Sobrevivencia:	84%		
Conversión	1.67		
Total de aireadores	3		

Figura 25. Datos de producción Estanque 7.

Fuente: (Freire, 2019)

3.9.3. Estanque #30

Sembrada el 03 de abril y cosechada el 22 de julio del 2019, con un periodo de producción de 110 días y una cosecha total de 61659.00 Lb de Camarón y un consumo total de 42550 kg de balanceado.

Piscina #30			
Datos de Producción			
Cosecha Actual			
Fecha de Siembra:	03 de Abril del 2019		
Total de siembra:	1450000.00		
Total de Libras cosechadas:	61659		
Peso/ camarón	28.21gr		
Liras producidas /ha:	11210.73		
Densidad:	263636		
Sobrevivencia:	64%		
Conversión	1.52		
Total de aireadores	6		

Figura 26. Datos de producción Estanque 30

CAPÍTULO IV

4.1. Resultados análisis fisicoquímicos

Una vez obtenidos los resultados de los análisis de laboratorio de los parámetros de control de calidad de producción se realizaron, exámenes fisicoquímicos en muestras de agua dando los siguientes:

4.1.1. pH (agua)

En las muestras recolectadas para el análisis fisco químico, se realizó medición de pH en los estanques de producción obteniendo, resultados de: estanque #30 valores de pH de 8.11, estanque #7 valores de pH de 7.57, estanque #6 valores de pH de 7.91. Los resultados obtenidos se encuentran bajo los parámetros estándar de pH entre 7.5 – 8.5 bajo el método científico de análisis de Potenciómetro (Skretting, 2018).

4.1.2. Alcalinidad

Los valores estándar para la alcalinidad CaCO3 (ppm) o dureza se encuentra en un rango de 80-200 (ppm) CaCO3 y como resultados en los estanques de producción obteniendo los siguientes valores estanque #30: 155.80 ppm CaCO3, estaque #7: 136.80 (ppm) CaCO3, estanque #6: 155.80 (ppm) CaCO3 alcalinidad (Skretting, 2018).

4.1.3. Nitrito

El análisis fisicoquímico de los estanques de producción se encuentra dentro del rango establecido, estanque #6, #7, #30 resultado de: <0.1 (NO2).

4.1.4. Nitrato

Los resultados con respecto a nitrato en los estanques de producción se obtuvieron resultado de estanque #30: 1.99 ppm (NO3); estanque #7: 0.61 ppm (NO3), estanque #6: 3.89 ppm (NO3). Encontrándose dentro del rango establecido entre 0.2 – 10 ppm (NO3) Nitrato (Skretting, 2018).

4.1.5. Fosfato

El valor estándar de Fosfato es 0.4-0.6 ppm PO4, resultados obtenidos: estanque #30 1.08 ppm PO4, sobrepasado de los limites estándar según el método de análisis, los estanque #7 y #6 muestran resultados 0.54 ppm PO4 y 0.26 ppm PO4 respectivamente.

4.2. Resultado de análisis de muestras de suelo

Los resultados en las muestras de suelo para determinare textura (granulometría) y permeabilidad relativa, según el (Ministerio de Acuacultura y Pesca, 2018) dieron como resultados para las muestras recolectadas en los estanques de producción #30, #7y #6 tipo de granulometría Arcilla y se muestra un suelo impermeable.

4.3. Análisis estadísticos

El presente análisis estadístico se realizó para identificar diferentes variables en el proceso de producción mediante técnicas de Clúster nombre que recibe un conjunto de técnicas de clasificación de tal manera que cada grupo sea homogéneo.

En este tipo de análisis se aplicó diferentes variables durante la producción de camarón para cuantificar los parámetros ambientales Oxígeno disuelto, temperatura, salinidad, turbidez a analizar en el modelo de ANDEVA queda como una factorial, cuyo modelo es el siguiente:

$$\begin{split} Y_{ijk} &= \mu + C_i + D_j + (CD)_{ij} + \mathcal{E}_{ijk} \\ \text{Donde:} \\ Y_{ijk} &= \text{Variable de respuesta en el clúster } i, \\ \text{distancia } j, \text{ estación } k. \\ \mathcal{H} &= \text{Media general de la variable de respuesta} \\ \text{Ci} &= \text{Efecto del i-ésimo cluster} \\ \text{Dj} &= \text{Efecto de la j-ésima distancia} \\ \text{(CD)ij} &= \text{Efecto de la interacción Clúster y Distancia.} \\ \mathcal{E}_{ijk} &= \text{Error dado por las estaciones} \end{split}$$

Figura 27. Formula de ANDEVA

Fuente: (Pozo, Hernadez, y Morell, 2008)

Para la ejecución de los gráficos de intervalo de define a los estanques de producción como Piscinas 1, 2, 3 correspondientes a los Estanques 6,7 y 30.

4.3.1. Análisis estadístico de Oxígeno Disuelto

Se ejecutó un gráfico de intervalos en el parámetro de Oxígeno Disuelto (am) comprado con los tres estanques de producción donde se utilizó una desviación estándar para el cálculo de los valores con IC de 95%, se puede observar que el estanque #30 contiene la mínima cantidad de Oxígeno disuelto durante la mañana

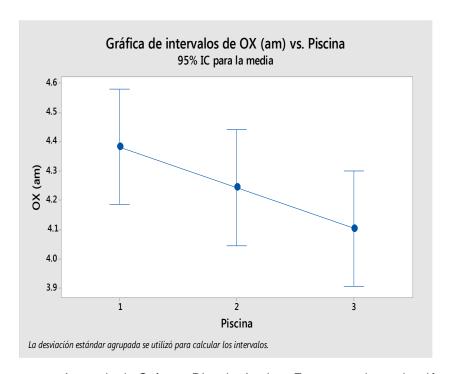


Figura 28 Intervalo de Oxígeno Disuelto (am) en Estanques de producción

Fuente: (Freire, 2019)

En el gráfico de intervalos para el parámetro de Oxígeno disuelto (pm) comparado con los estanques de producción, se observa que el estanque de producción #30 mayor concentración de Oxígeno disuelto en horas de la tarde.

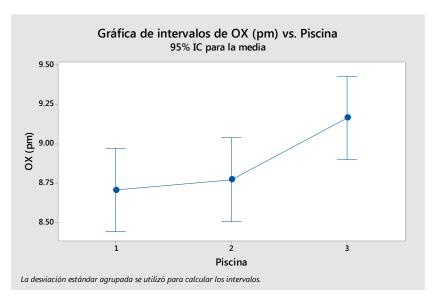


Figura 29 Intervalo de Oxígeno Disuelto (pm) en Estanques de producción

Fuente: (Freire, 2019)

4.3.2. Análisis estadístico de Temperatura

Se ejecutó un gráfico de intervalos en el parámetro de temperatura (am) y (pm) para los tres estanques de producción donde se utilizó una desviación estándar para el cálculo de los valores con IC de 95%, en el estanque de producción muestra la mayor temperatura en horas de la mañana.

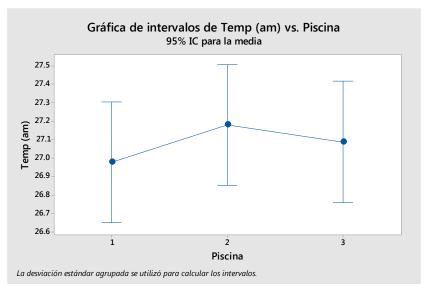


Figura 30 Intervalo de Temperatura (am) en Estanques de producción

En el gráfico de intervalos para la temperatura (pm) el estanque de producción #30 muestra la mayor temperatura en horas de la tarde.

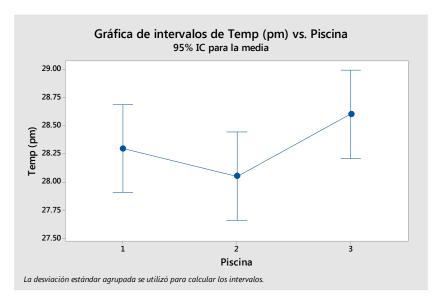
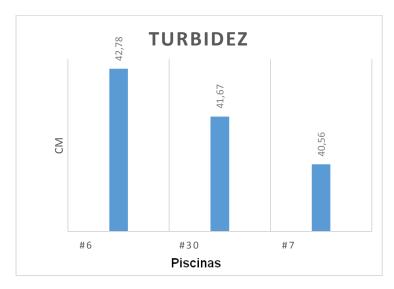



Figura 31 Intervalo de Temperatura (pm) en Estanques de producción Fuente: (Freire, 2019)

4.3.3. Análisis estadístico de Turbidez

La representación de la turbidez en la siguiente grafica es inversamente proporcional debido a que a menor distancia (cm) de la superficie va a existir la más alta concentración de turbidez, por lo tanto, la mayor concentración se detectó en el estanque de producción #7 y la turbidez más baja en el estanque #6.

Figura 32 Grafico de Intervalos de Turbidez en Estanques de producción Fuente: (Freire, 2019)

4.3.4. Análisis estadístico de Salinidad

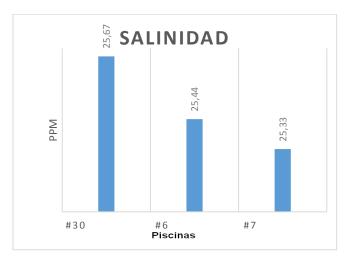


Figura 33 Gráfico de Intervalos de salinidad en Estanques de producción.

Fuente: (Freire, 2019)

En cuanto el mayor índice de salinidad se determinó en el estanque 30 y el menor se registró en el estanque 7

4.4. Discusión

Los resultados obtenidos en base a los parámetros fisicoquímicos en el agua sobre pH, alcalinidad, nitritos y nitratos muestran una estabilidad positiva y considerable dentro de los estándares establecidos, mientras que el nivel de fosforo supera el nivel estandarizado en el estanque 30, y se halló deficiencia del mismo parámetro en el estanque 6.

La concentración de oxígeno disuelto en el agua es para el camarón un factor crítico en su crecimiento, reproducción, supervivencia y tolerancia a las enfermedades. La concentración adecuada de Oxígeno Disuelto es de 5 – 15 mg/, en este estudio los valores promedio obtenidos en los tres estanques de producción en horas de la mañana encontrándose volúmenes mínimo los cuales fueron de 4.2 mg/l OD y con valores máximos de 8.97mg/l OD en la tarde, encontrándose relativamente óptimos al rango establecido (Boyd C. , 2017).

Sivaraman, Krishnan, & Radhakrishnan, (2019) en base a la calidad de agua establecen que al mantener de forma óptima y reducir el intercambio de la misma, se reducirá la liberación del exceso de nutrientes al medio ambiente; por lo que aproximadamente el 92% de los acuicultores mantienen el agua controlando un pH optimo entre 7.5 y 8.5, por ello en comparación con estos estándares de optimización los valores de pH obtenidos en las muestras de laboratorio para las estanque de producción en el presente estudio se encuentran dentro de los rangos establecidos.

En lo que respecta a los resultados obtenidos en la presente investigación dentro de los estanques de producción 6, 7, 30 muestran concentraciones de salinidad de: 25.33, 25.44 y 25.67 (ppm) respectivamente, siendo estos rangos que sobrepasan el límite que establece (Sivaraman, Krishnan, & Radhakrishnan, 2019) de 15 y 25 (ppm) de salinidad sin embargo, el nivel de incidencia es poco considerable por lo que es necesario la aplicación de las buenas prácticas de manejo para la autorregulación del parámetro.

Las especies de camarón de aguas cálidas crecen mejor a temperaturas entre 25 °C y 32 °C (Boyd C., 2017). En este estudio se obtuvo que el estanque 6 obtuvo una temperatura de 28.4°C, el estanque 7 obtuvo una temperatura de 28.15°C el estanque

30 obtuvo una temperatura de 28.69°C obtuvo la mayor producción con respecto a los estanques 6 y 7.

Rojas, Haws, & Cabanillas, (2005) Indican que los rangos óptimos para turbidez se encuentran entre 35 – 45 cm, en el presente estudio presentaron medición de turbidez para los estanques 6: 42.78 cm, estanque 7: 40.76 cm y estanque 30: 41.67 cm encontrándose los tres dentro del rango establecido.

Boyd C., (2017) Los niveles de producción también están orientadas a las formas o dimensiones de los estanques, obedeciendo así a las condiciones topográficas del terreno, como lo indica (Cuéllar, Lara, Morales, & Abelardo, 2010) no se debe construir estanques de producción en terrenos bajos y anegables propensos a inundaciones en época lluviosa, los estanques de producción se encuentran en zonas altas no propensas a inundaciones. En este estudio todos los se encuentran situados en zonas altas referentes al nivel del mar, los estanques 6 y 7 se su forma se encuentran es los diseño óptimos para producción, mientras que el estanque 30 presenta una forma irregular distinto a lo que indica (Boyd C., 2017). Sin embargo, el estanque 30 teniendo una forma irregular resulto el estanque con mayor producción de en la cosecha.

El (Ministerio de Acuacultura y Pesca, 2018) acuerdo Ministerial No MAP-SUBACUA-2018-0005-A en el Art.10 establece el análisis de granulometría y permeabilidad del suelo, indica la textura (Granulometría) de Arcilla limosa de muy baja permeabilidad para los estanques de producción 6 y 30 y Arcilla con mayor porcentaje es prácticamente impermeable para el estanque 7.

4.5. Desarrollo de propuesta

A continuación, se presenta la siguiente guía de manejo como medidas complementarias para obtener máxima producción y mínimo impacto ambiental.

Preparación de estaques

No dejar secar en exceso los suelos o fondos de los estanques para un nuevo ciclo de producción, debido a que en la interface agua-suelo existe de forma natural nutriente, material flotante orgánico y evitar el uso excesivo de fertilizantes.

Materia orgánica del suelo

Recolectar 10 a 12 muestras al azar, 5 cm en la parte superficial de materia orgánica en los fondos de los estanques, homogenizar y compactar las muestras este proceso se debe determinar mediante el análisis químico de Dicromato de Potasio y Ácido Sulfúrico (Método Walker- Black) para determinar la cantidad de carbono orgánico presente en el suelo (Carreira, 2010).

Si la concentración de carbono orgánico sobrepasa el 3 a 4% este favorece a la productividad bentónica para un nuevo ciclo de producción (Boyd C., 2015).

Fertilización

Para promover el plancton y bentos como alimento natural del camarón, se utiliza nutrientes claves como nitrógeno y fosforo, la fuente común del fosforo es el ortofosfato y el nitrógeno puede ser reemplazado con urea (Boyd C., 2015).

Sin embargo, es necesario tomar en cuenta que la urea se Hidroliza rápidamente convirtiéndose en amonio y este puede ser toxico para el camarón en concentraciones relativamente bajas.

Se debe realizar monitores continuos y análisis fisicoquímicos para determinar las concentraciones de estos fertilizantes.

Fertilización en base a lectura del Disco Secchi

Como lo expresa (Carreira, 2010) el objetivo de manejar la calidad de agua es mantener moderado pero estable Bloom del fitoplancton; los fertilizantes deben de ser aplicados según la visibilidad del disco Secchi es decir de 25 a 40 cm de visibilidad aplicar un rango máximo de 10kg /ha de fertilizante.

Tabla 11. Aplicación de fertilizante según la lectura del Disco Secchi.

Disco Secchi	Fertilizante
(cm)	(Kg/ha)
20	0
25	2.5
30	5.0
35	7.5
40	10.0

Fuente: (Boyd C., 2017).

Manejo de efluente

Luego de la cosecha del ciclo de producción los efluentes generalmente se ven afectados por nutrientes, materia orgánica y solidos suspendidos.

Se propone implementar buenas prácticas de manejo durante el ciclo de cultivo.

Reducir la descarga lentamente los últimos 20-25% del agua, evitar remover los sólidos en el fondo de los estanques de producción.

Transporte

Los vehículos que transporta la cosecha deben de encontrase limpios y en perfecto estado.

No debe sobrepasar la carga en tonelada según la capacidad del transporte. Las cajas herméticas o bines deben de encontrase limpias en buen estado y sin sobrepasar las capacidades de carga en las hieleras.

Se debe de contar con al menos 2 vehículos adicionales ya se para por un desperfecto mecánico o una sobre producción al momento de cosechar.

4.6. Conclusiones

Se acepta la hipótesis, debido a que si existe incidencia de los parámetros ambientales con respecto a la producción de camarón en las estanques de producción.

En consecuencia, de los resultados obtenidos en base a los objetivos planteados se concluye con los siguientes puntos:

- Dentro del área de investigación se registra de manera óptima la calidad de agua según sus parámetros fisicoquímicos, pH, alcalinidad, nitritos y nitratos.
- Existe una notable variabilidad del nivel de Fosfato en los 3 estanques, la cual se visualiza a través de los resultados ya que el estanque 30 supera el rango estandarizado mientras el estaque 6 muestra una deficiencia de fosforo por debajo del rango necesario.
- También se logró evidenciar que el tipo de suelo donde se ubican los estanques monitoreados son de tipo arcilloso e impermeables, lo que indica que son aptos para el desarrollo de la actividad camaronera.
- A través del análisis comparativo de oxígeno disuelto (pm), temperatura (am), temperatura (pm), turbidez (cm) y salinidad (ppm) se determinó que existe una diferencia poco significativa en cada una de las piscinas, concluyendo además que existe un nivel óptimo de estos factores ambientales para el desarrollo de la producción de camarón *Litopenaeus vannamei*.
- El estanque 30 presenta la mayor parte de los parámetros óptimos con respecto a la producción, sin embargo en el análisis fisicoquímico se evidencia que el parámetro de Fosfato supera el rango óptimo establecido favoreciendo a la producción de camarón con respecto a los estanques 6 y 7, el exceso de este nutriente podría ocasionar consecuencias adversas o negativas en el efluente causando la eutrofización.

4.7. Recomendaciones

- Es recomendable la aplicación de las buenas prácticas establecidas en la guía de manejo como medidas complementarias para obtener máxima producción y mínimo impacto ambiental.
- Autorregular los parámetros ambientales que no están dentro del rango estándar establecido.
- Se recomienda implementar la medición de pH en agua como parámetro diario durante los procesos de producción por estanque, ya que este nos daría mejor control e incidencia en la producción y a su vez controlar los niveles de pH al momento de realizar la descarga del efluente.
- Implementar el número de monitoreos manuales con respecto al crecimiento del camarón para tener bajos porcentajes de mortalidad.
- De acuerdo a las buenas prácticas de manejo se recomienda mantener un control constante entre los rangos de salinidad ya que favorece la calidad del agua en su descarga final.
- Se recomienda realizar monitoreos de calidad de agua en el afluente y efluente en cada proceso en los estanques de producción.
- Realizar monitoreos de Solidos Suspendidos (SS) antes, durante y al finalizar los procesos de producción por estanque.
- Es recomendable además realizar este tipo de estudios en otras empresas camaroneras para identificar la optimización de los parámetros influyentes en la producción de camarón.

4.8. Bibliografía

- Abad, S., Betancourt, M., Vargas, F., & Roque, A. (2011). Interacción de factores físicos, químicos y biológicos en el cultivo del camarón. Avances en Acuicultura y Manejo Ambiental. Avances en Acuicultura y Manejo Ambiental. Mazatlán, 151-164.
- AQ1 SYSTEM. (2017). *Impulsando la productividad de la acuicultura*. Obtenido de AQ1 SYSTEM: http://www.aq1systems.com
- Bernabé, L. (2016). Sector Camaronero: Evolución y proyección a corto plazo. *FCSHOPINA*, 87, 3-7.
- Bioenciclopedia. (2015). *Camarón, descripción, alimentación y habitat*. Obtenido de Bioenciclopedia: https://www.bioenciclopedia.com
- Boyd, C. (2015). Calidad del agua: una introducción. London: Springer.
- Boyd, C. (2017). Consideraciones sobre la calidad del agua y del suelo en cultivos de camarón. Alabama: Department of Fisher and Alleied Aquacultures Auburn University, Alabama 36849 USA 30 pp.
- Calderón, I., Mariño, R., & Landivar, J. (2002). Diseño de un sistema de tratamiento de efluentes provenientes de raceways en camaronera, basado en un sistema de filtros físicos biólogicos. Obtenido de Espol: http://www.dspace.espol.edu.ec/xmlui/bitstream/handle/123456789/1790/3528 .pdf?sequence=1&isAllowed=y
- Carreira, D. (2010). Carbono orgánico (Método de WALKLEY & BLACK). Obtenido de INTA Castelar: https://www.agroindustria.gob.ar/sitio/areas/proinsa/informes/_archivos/00201 0_Ronda%202010/000003_Ing.%20Agr.%20Daniel%20Carreira%20(Carbono %20oxidable%20y%20Nitr%C3%B3geno)/000008_Carbono%20oxidable%20-M%C3%A9todo%20de%20Walkley&Black-%20%20y%20en%20Nit
- Cedeño, A. (2015). Operación y Mantenimiento de la Camaronera CADETOGA.

 Obtenido de Camaronera CADETOGA:

 https://maeesmeraldas.files.wordpress.com/2015/09/borrador-del-estudio-deimpacto-ambiental-del-proyecto-camaronera-cadetoga.pdf
- Cervantes, K. (2019). Beneficios y Costos de Aireación Técnica en Camaroneras.

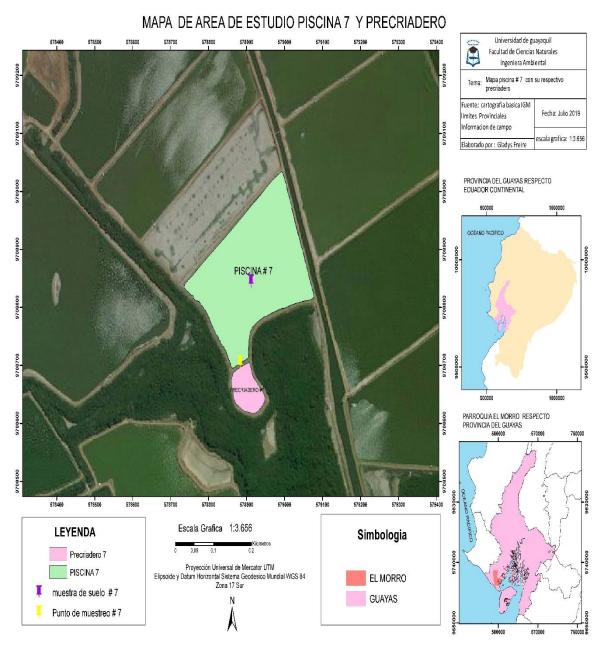
 Obtenido de Cámara Nacional de Acuacultura: http://aquaexpomanabi.cna-ecuador.com/wp-content/uploads/2019/04/Kleber-Cervantes.pdf
- Chand, B., Trivedi, R., Dubey, S., Rout, S., Beg, M., & Das, U. (2015). Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man). *Aquaculture Reports*. 2, 26-33.
- Comas, R., Medina, A., Nogueira, D., & Sosa, T. (2013). Propuesta metodológica para la formulación del problema científico. *Ingeniería Industrial, 34*(2), 188-197.

- Cuéllar, J., Lara, C., Morales, V., & Abelardo, G. (2010). Manual de Buenas Prácticas de Manejo para el cultivo del camarón blanco Penaeus vannamei. Obtenido de OSPESCA: http://aquaticcommons.org/16644/1/86.%20Various%20Institutions.%20MBP %202010%5B1%5D.pdf
- DMplast. (2019). Contenedores termicos para almacenar y trasnportar camaron y marisco. Obtenido de DM PLast: https://dmplast.mx/contenedores-termicos-para-almacenar-y-transportar-camaron-y-mariscos/
- EMIS. (2019). *Plumont S.A. (Ecuador)*. Obtenido de https://www.emis.com/php/company-profile/EC/Plumont_SA_es_4908218.html
- FAO. (2018). Comercio, mercadotecnia y economía del camarón. Obtenido de Organización de las Naciones Unidas para la Alimentación y la Agricultura : http://www.fao.org/3/a0086s/A0086S07.htm
- Hernández, J. (2016). Caracterización de la calidad de agua en un sistema intensivo de cultivo de camarón blanco Litopenaeus vannamei, en condiciones de alta salinidad con recambio de agua limitado. Obtenido de Centro de Investigaciones Biológicas del Noroeste: http://dspace.cibnor.mx:8080/handle/123456789/505
- Islam, M., & Tabeta, S. (2019). Shrimp vs prawn-rice farming in Bangladesh: A comparative impacts study on local environments and livelihoods. *Gestión del océano y la costa*, 167-1761.
- Límites Máximos Permisibles de la Normativa Ecuatoriana. (s.f.). Tabla 3. Libro IV. Anexo 1, TULAS.
- Marín, H., & Chang, J. (2009). Descripción y análisis de impactos ambientales típicos relacionados a la actividad de producción acuícola en el Ecuador. Obtenido de Espol: http://www.dspace.espol.edu.ec/xmlui/handle/123456789/6180
- Mecatronica Ecuador. (2018). *Alimentación Automatica para el sector camaronero en Ecuador*. Obtenido de Mecatronica Ecuador: https://mecatronicaecuador.wordpress.com/2018/03/06/alimentacion-automatica-para-el-sector-camaronero-en-ecuador/
- Ministerio de acuacultura y pesca. (2018). *Acuerdo Nro. MAP-SUBACUA-2018-0005- A.* Obtenido de MAGAP: http://www.acuaculturaypesca.gob.ec/wp-content/uploads/downloads/2018/08/ACUERDO-005.pdf
- Ordóñez, D. (2015). Mejoramiento del proceso productivo del camarón para la empresa camaronera "CAVEYFA" del cantón Santa Rosa Provincia de El Oro.

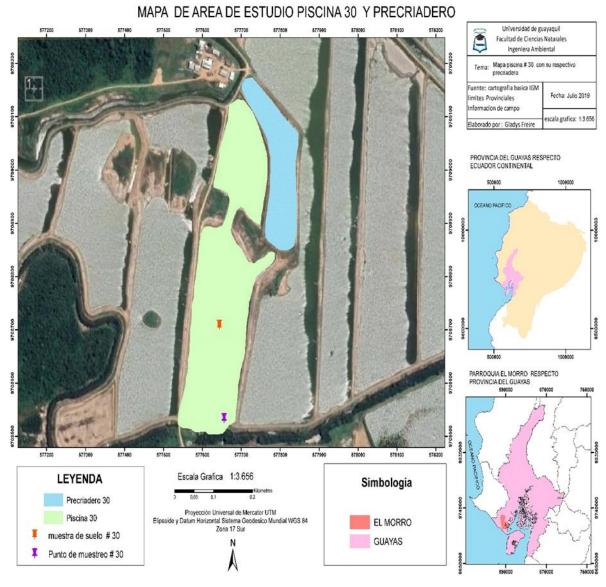
 Obtenido de Escuela Politécnica Nacional: https://bibdigital.epn.edu.ec/handle/15000/11367
- Potenciometro. (s.f.).
- Rojas, A., Haws, M., & Cabanillas, J. (2005). *Buenas prácticas de manejo para el cultivo de camarón.* Obtenido de The David and Lucile Packard Foundation.

- United States Agency for International Development.: www. crc. uri. edu/download/PKD_good_mgt_ field_manual. pdf.
- Rojas, A.A., Haws, M.C. y Cabanillas, J.A. ed. (2005). . (s.f.).
- Salgado, N. (2014). Neoliberalismo e industria camaronera en Ecuador. *Letras Verdes*, *15*, 23.
- Schwarz, L. (2005). *Visión general del sector acuícola nacional Ecuador.* Obtenido de http://www. fao. org/fishery/countrysector/naso_ecuador/es.
- Sivaraman, I., Krishnan, M., & Radhakrishnan, K. (2019). Better Management Practices for Sustainable Small-scale Shrimp Farming. *Journal of cleaner production*, *214*, 559-572.
- Sivaraman, I., Krishnan, M., & Radhakrishnan, K. (2019). Better Management Practices for Sustainable Small-scale Shrimp Farming. *Journal of cleaner production*, *214*, 559-572.
- Skretting. (2018). Calidad e inocuidad alimentaria. Obtenido de Nutrace: https://www.skretting.com/siteassets/ec-files/brochures/catalogo-nutrace-2018.pdf
- SUMACUA. (2019). *Alimentador automático con hidrofono AQ1*. Obtenido de Suministros Acuicolas: http://web.sumacua.com/Producto/2/ver_mas/
- Supercias. (2019). Superintendecia de Compañias: Valores y Seguros. Obtenido de https://portal.supercias.gob.ec/wps/portal/Inicio/Servicios/!ut/p/a1/IZHRaoMwF lafZRdezhxjaHV3UbeodbRrKbO5KVoyKzgjMd3Y2y-TMihbIZ67HL6Pn MHcZQj3hYfdVXoW
- Tobey, J., Clay, J., & Philippe, V. (1998). Impactos Económicos, Ambientales y Sociales del Cultivo de Camarón en Latinoamérica. *Universidad de Rhode Island, Rhode Island (EUA)*, 5-68. Obtenido de https://www.crc.uri.edu/download/MAN_0034.pdf
- Uzcátegui, C., Solano, J., & Figueroa, P. (2016). Perspectiva sobre la sostenibilidad de los recursos naturales a largo plazo: caso industria camaronera ecuatoriana. *Revista Universidad y Sociedad, 8*(3), 163-168.
- Velasquez, P., & Carchipulla, V. (2018). Importancia del oxígeno disuelto para mejorar la calidad de agua en estanques de camarón blanco Litopenaeus Vannamei.

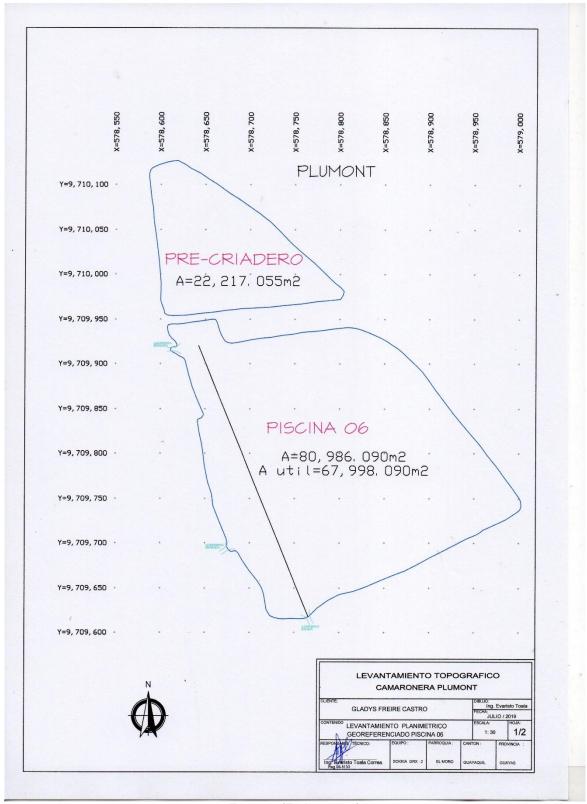
 Obtenido de Universidad Técnica de Machala: http://repositorio.utmachala.edu.ec/handle/48000/12905
- Vergara, W., Rios, A. R., Trapido, P., & Malarín, H. (2014). Agricultura y clima futuro en América Latina y el Caribe: impactos sistémicos y posibles respuestas. Washington D.C.
- Zambritisa. (2018). *Qué especies de camarón se producen en Ecuador*. Obtenido de Zambritisa empacadora: http://www.zambritisa.com/


Zamora, J. R. (2009). Parámetros fisicoquímicos de dureza total en calcio y magnesio, pH, conductividad y temperatura del agua potable analizados en conjunto con las Asociaciones. *Fundación Dialnet, 9*(12-13), 125-134.

4.9. Anexos


MAPA DE AREA DE ESTUDIO PISCINA 6 Y PRECRIADERO Universidad de guayaquil Facultad de Ciencias Naturales Ingeniera Ambiental Tema: Mapa piscina # 6 con su respectivo precriadero Fuente: cartografia basica IGM Fecha: julio 2019 limites Provinciales Informacion de campo PRECRIADERO 6 escala grafica: 1:2.677 Elaborado por : Gladys Freire PROVINCIA DEL GUAYAS RESPECTO ECUADOR CONTINENTAL PARROQUIA EL MORRO RESPECTO PROVINCIA DEL GUAYAS 580000 670000 **LEYENDA** Escala Grafica 1:2.677 Simbologia muestra de suelo #6 Proyección Universal de Mercator UTM Datum Horizontal Sistema Geodesico Mundial WGS 84 Zona 17 Sur Punto de muestreo # 6 EL MORRO precriadero 6 GUAYAS Piscina 6 Fuente: (Freire, 2019)

Anexo 1. Mapa Estanque de producción #6


Anexo 2. Mapa Estanque de producción #7

Anexo 3. Mapa Estanque de producción #30

Anexo 4. Mapa levantamiento Topográfico Piscina #6

PERFIL LOGITUDINAL

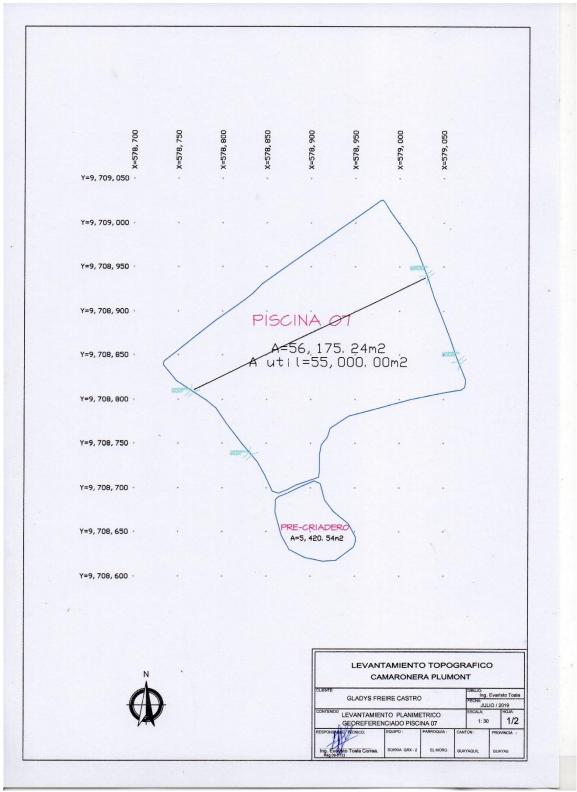
ATTRA MANIMA DE AQUA

COM EN 350,000 m

PERFIL TRANSVERSAL ENTRADA

HABO

DERFIL TRANSVERSAL SALIDA


LEVANTAMIENTO TOPOGRAFICO
CAMARONERA PLUMONT

TORK CLUST FREE CAMINO

TORK CL

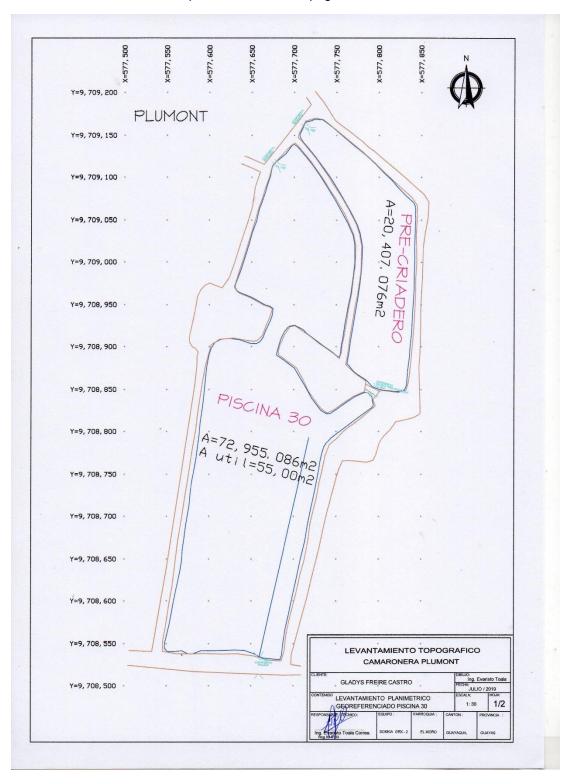
Anexo 5. Mapa ubicación de Compuertas de entrada y salida Piscina #6

Anexo 6. Mapa levantamiento Topográfico Piscina #7

PERFIL LOGITUDINAL

ATTRIA HANDIN DE AGUA

DES EN 240.00 m


DES EN 240.00 m

DES EN 100.00 m

DES EN 100.00

Anexo 7: Mapa ubicación de Compuertas de entrada y salida Piscina #7

Anexo 8. Mapa levantamiento Topográfico Piscina #30.

Anexo 9. Mapa ubicación de Compuertas de entrada y salida Piscina #30.

Anexo 10. Registro de parámetros de Oxígeno y Temperatura semana 1 - 4

											_	tácora de	-	_	-													
											0	XIGENO	DISUEL	TO, TE	MPERAT	URA												
												Camai	ronera	PLUM	A.2 TNC													_
SEMANA 1	-	4.60	. (20.00		_	2.10	1/2010			2/0			_	4.00	1/2010		_	= 10	4/2010		_	c to	1/2010		_	7/0	1/2019	_
	-		4/2019		_		4/2019		_		4/2019	_	_		4/2019 METRO		_		4/2019		_		4/2019 METRO		-		METRO	_
PISCINA /	-		METRO				METRO		-	11.00	METRO		-		-				METRO		_		_		-	X	-	
ESTANQUE	_	X	-	mp I	_	OX T	_	mp	-	X T	-	mp	-	DX		mp pm	-	OX I	am	pm -	am	OX Inm	-	emp pm	am	-	Ter	pm
ne.	am	pm	am	pm	am	lpm	am	pm	am	pm	am	pm	am	Ipm	am	pm	am	Ipm	am	pm	am	Ipm	am	Ipm	am	pm	am	Ipm
#6					Maria de la compansión de		100000	ULIDAY BAR	10000	Oliver St.		(0.000)	odisco.	NG III	others	Name of Street	2000		Name and Address of the Owner, where	and the same of	NA DO		0.000		20100	Carlotte	SELECTION ASSESSED.	100
#7			-		7-1-		Design A		1.8	9.8	29.9	29.2	1.4	8.4	28.4	30.0	3.8	11.2	28.0	32.0	4.7	11.4	28.1	31.80	4.3	11.2	28.6	22
SEMANA 2	100	1							1,0	9.0	29.9	29.2	1.4	0.4	20.4	30.0	3.0	11.2	20.0	32.0	4.7	11.4	20.1	31.00	4.3	11.3	20.0	34.
SCIVIAINA Z		8/0	4/2019	-		9/0	4/2019	_		10/0	4/2019			11/	04/2019			12/0	04/2019			13/0	04/2019)		14/0	4/2019	
PISCINA /			METRO				METRO				METRO				METRO		_		METRO				METRO				METRO	
ESTANQUE		OX	-	mp		OX	_	mp	(X	-	mp	-	X	-	mp	-	DX	*	mp		OX	Т	emp	0	X	Ter	mp
ESTRIVOLOR	am		-	pm	am	pm	am	pm	am	pm	-	pm	am	-	-	pm	am	pm	am	pm		pm	am	pm	am	pm	am	pm
#6	0111	Ibin	To in	Ibili	uni	Ibiii	Turit.	Ipini		1pm		Ip	4111	15	1	P		11.9	23.4	30.5	6.5	13.7	28.9	32.7	6.9	11.9	29.4	32.
#7		es Yu	10000	NUMBER OF	2.8	11.0	29.1	31.1	4.0	11.2	29.3	31.7	3.5	11.9	29.6	32.4	3.8	11.9	22.6	30.5	3.5	11.4	28.9	30.0	4.5	11.3	29.3	31.
#30	4.2	9.4	29.2	31.0	3.7	10.30	28.5	29.7	3.7	10.6	29.4	32.9	5.0	10.9		32.3	5.3	9.6	29.8	31.7	5.0	10.0	29.6	32.20	4.0	9.5	29.7	32.
SEMANA 3	-					1 20100				1				-				-	-			-		-	-			
		15/0	4/2019			16/0	4/2019			17/0	4/2019			18/	04/2019			19/0	04/2019			20/0	04/2019)		21/0	4/2019	
PISCINA /		PAR	METRO	(A		PARA	METRO			PARÁ	METRO			PARA	METRO			PARA	METRO			PAR	METRO)		PARÁ	METRO	
ESTANQUE	(X	Te	mp		OX	Te	mp	(X	Te	mp	(X	Te	mp		OX	Te	mp		OX	T	emp	0	Χ	Tei	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	5.9	9.5	29.2	31.1	5.2	6.5	29.7	32.3	4.0	9.7	29.6	30.1	4.3	9.2	28.8	30.5	5.9	11.3	29.1	31.6	5.6	9.5	29.0	31.0	6.1	10.3	29.1	30.
#7	4.2	9.6	29.4	31.0	4.0	5.5	29.8	31.0	3.9	12.3	29.3	31.3	3.5	9.0	28.9	29.6	5.0	12.1	29.0	29.5	4.3	8.8	29.4	30.1	4.0	8.9	29.3	31.
#30	4.5	14.4	29.6	32.1	4.3	11.90	30.2	33.6	3.4	10.0	30.0	31.2	2.2	14.0	28.8	33.2	2.5	14.6	29.3	31.2	5.2	10.7	29.5	32.10	4.3	9.1	29.0	31.
SEMANA 4													_												_	-		
PISCINA /			4/2019				4/2019		_		4/2019		_		04/2019		_		4/2019				04/2019		-		4/2019	_
ESTANQUE	_		METRO				METRO				METRO		_		METRO		_	_	METRO		_		METRO		-	-	METRO	_
77	+	X	-	mp	_	OX	_	mp	_	X	-	mp	-	X		mp	_	OX	-	mp	_	OX	-	emp	-	X	Te	_
	-	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	-	am	pm	-	pm	am	pm	am	pm	am	pm
#6	-	11.2	29.8	31.7	5.1	9.3	29.1	29.4	4.0	11.5	29.0	33.8	4.0	7.9	29.1	29.0	2.8	8.3	28.6	30.7	3.4	9.4	29.7	29.6	3.4	7.8 7.9	27.5	28.
#7	4.0	9.8	30.2	31.3	3.5	9.3	29.8	29.6	3.8	8.0	29.5	29.5	5.2	10.6	29.6	21.5	4.3	8.0	28.8	30.5	4.5		29.6	-	-	-	27.5	29.
#30	3.9	10.5	29.9	31.7	5.0	10.40	29.4	31.3	4.8	11.8	29.3	32.2	5.0	10.2	29.6	30.3	4.1	11.3	28.2	33.4	3.4	8.0	29.2	29.4	2.2	7.8	27.0	28.

Sladys Feire Lastro.
Universidad de Guayaquil
Facultad de Clencias Naturales.
Tesista

Ing. Ao Ronatd Mejillones Garcia Responsable de Campo Camaronera Plumont S.A

Ronald Mejillones Garcia
ING. ACUICULTOR
Resp. Técnico de Campo
PLUMONT S.A.

PLUMONT S.A. RUC: 0991301208001

Anexo 11. Registro de parámetros de Oxígeno y Temperatura semana 5 - 8

OXIG OXIG	m	PARÁMETRO	5/2019 5/05/2019
30/04/2019 1/05/2019 1/05/2019 PARÁMETRO PARÁMETRO	Camaronera PLUMONT S.A	PARÁMETRO	METRO
30/04/2019	2/05/2019 PARÁMETRO PAR	PARÁMETRO	METRO
PARÁMETRO C Temp OX Temp Temp 0m am pm am pm am pm 10.9 28.4 27.8 3.5 8.4 29.5 3 10.5 28.8 29.6 3.5 8.2 29.3 3 10.8 29.7 3 29.7 3 3 29.7 3 3 29.7 3 3 29.7 3 3 29.7 3 3 29.7 3 3 3 29.7 3 3 29.7 3 3 4 29.5 3 3 3 3 29.7 3 <t< td=""><td>PARÂMETRO PARÂMETRO PARÂMETRO PARÂMETRO </td><td> PARÁMETRO</td><td> METRO</td></t<>	PARÂMETRO PARÂMETRO PARÂMETRO PARÂMETRO	PARÁMETRO	METRO
Temp	D	OX Temp pm am pm am pm OX am pm am pm 2.0 7.8 28.8 29.0 3.3 9.2 2.1 7.9 28.3 28.9 2.8 9.2 1.9 7.8 28.5 29.3 1.9 8.3 TOX 1.0/05/2019 11/0 PARÁMETRO PARÁ PARÁ OX Temp OX am pm am pm 3.5 9.3 28.9 3.2 11.0 3.3 7.8 28.1 29.2 3.3 9.3 3.4 8.7 28.3 29.5 3.0 10.4	Temp
m	Marcon M	am pm am pm am pm am pm am	am pm
10.9 28.4 27.8 3.5 8.4 29.5 2 10.5 28.8 29.6 3.5 8.2 29.3 3 10.80 29.0 31.5 5.3 10.8 29.7 3 7/05/2019	30.1 1.56 7.9 28.6 30.2 30.5 3.0 8.5 29.0 30.1 31.5 2.6 7.9 26.5 29.1	2.0 7.8 28.8 29.0 3.3 9.2 2.1 7.9 28.3 28.9 2.8 9.5 1.9 7.8 28.5 29.3 1.9 8.3 10/05/2019	28.4 30.7 4.0 9.2 29.2 30.8 28.8 30.4 4.2 10.3 29.3 30.8 28.6 31.90 2.9 10.8 28.7 32.0 32.019
10.5 28.8 29.6 3.5 8.2 29.3 3 10.80 29.0 31.5 5.3 10.8 29.7 3 7/05/2019 8/05/2019 PARÁMETRO PARÁMETRO (x Temp OX Temp om am pm ar pm a	30.5 3.0 8.5 29.0 30.1 31.5 2.6 7.9 26.5 29.1	2.1 7.9 28.3 28.9 2.8 9.5 1.9 7.8 28.5 29.3 1.9 8.3 10/05/2019	28.8 30.4 4.2 10.3 29.3 30.8 28.6 31.90 2.9 10.8 28.7 32.0 55/2019
10.80 29.0 31.5 5.3 10.8 29.7 3 7/05/2019	31.5 2.6 7.9 26.5 29.1	10/05/2019 11/05 12/05	28.6 31.90 2.9 10.8 28.7 32.0
7/05/2019	9/05/2019 PARÂMETRO DY STEMP M M M M M M M M M M M M	10/05/2019 11/0 PARÂMETRO PARÂ OX Temp OX am pm am pm am pm 3.5 9.3 28.0 28.9 3.2 11.0 3.3 7.8 28.1 29.2 3.3 9.3 3.4 8.7 28.3 29.5 3.0 10.4	12/05/2019 12/05/20196
PARÁMETRO K Temp OX Temp 8m pm am am pm am pm am pm am am am pm am am pm am am am pm am am am am	PARÂMETRO PAR	PARÁMETRO PARÁ OX Temp OX am pm am am am pm am am am	METRO
PARÁMETRO K Temp OX Temp 8m pm am am pm am pm am pm am am am pm am am pm am am am pm am am am am	PARÂMETRO PAR	PARÁMETRO PARÁ OX Temp OX am pm am am am pm am am am	METRO
K Temp OX Temp om am pm am pm am pm 8.7 28.9 32.5 3.2 9.4 29.6<	p OX Temp m am pm am pm 30.3 3.6 9.5 29.2 29.6 30.0 4.4 12.4 29.1 30.3 28.9 3.4 9.2 28.8 29.6 16/05/2019 PARÂMETRO	OX Temp OX am pm am pm am pm am pm 3.5 9.3 28.0 28.9 3.2 11.0 3.3 7.8 28.1 29.2 3.3 3.9 3.0 10.4 17/05/2019 18/0	Temp OX Temp m m m m m m m m m
om am pm pm am pm pm am pm pm am pm pm pm am pm pm<	m am pm am pm 30.3 3.6 9.5 29.2 29.6 30.0 4.4 12.4 29.1 30.3 28.9 3.4 9.2 28.8 29.6 16/05/2019 PARÂMETRO	am pm am pm am pm 3.5 9.3 28.0 28.9 3.2 11.0 3.3 7.8 28.1 29.2 3.3 9.3 3.4 8.7 28.3 29.5 3.0 10.4	am pm am pm am pm 28.2 32.2 4.1 8.4 28.2 28.6 28.4 30.1 3.2 8.2 28.5 28.5 28.0 30.6 3.4 8.3 29.1 28.5
8.7 28.9 32.5 3.2 9.4 29.6 2 9.7 28.8 30.1 4.6 10.5 29.1 3 9.80 28.5 31.2 1.8 7.7 28.7 2 14/05/2019 15/05/2019 PARÁMETRO PARÁMETRO	30.3 3.6 9.5 29.2 29.6 30.0 4.4 12.4 29.1 30.3 28.9 3.4 9.2 28.8 29.6 16/05/2019 PARÁMETRO	3.5 9.3 28.0 28.9 3.2 11.0 3.3 7.8 28.1 29.2 3.3 9.3 3.4 8.7 28.3 29.5 3.0 10.4	28.2 32.2 4.1 8.4 28.2 28.6 28.4 30.1 3.2 8.2 28.5 28.8 28.0 30.6 3.4 8.3 29.1 28.5
9.7 28.8 30.1 4.6 10.5 29.1 3 9.80 28.5 31.2 1.8 7.7 28.7 2 14/05/2019 15/05/2019 PARÁMETRO PARÁMETRO	30.0 4.4 12.4 29.1 30.3 28.9 3.4 9.2 28.8 29.6 16/05/2019 PARÂMETRO	3.3 7.8 28.1 29.2 3.3 9.3 3.4 8.7 28.3 29.5 3.0 10.4 17/05/2019 18/0	28.4 30.1 3.2 8.2 28.5 28.8 28.0 30.6 3.4 8.3 29.1 28.5
9.80 28.5 31.2 1.8 7.7 28.7 2 14/05/2019 15/05/2019 PARÁMETRO PARÁMETRO	28.9 3.4 9.2 28.8 29.6 16/05/2019 PARÂMETRO	3.4 8.7 28.3 29.5 3.0 10.4 17/05/2019 18/0	28.0 30.6 3.4 8.3 29.1 28.5
14/05/2019 15/05/2019 PARÁMETRO PARÁMETRO	16/05/2019 PARÁMETRO	17/05/2019 18/0	
PARÁMETRO PARÁMETRO	PARÁMETRO		05/2019 19/05/2019
PARÁMETRO PARÁMETRO	PARÁMETRO		05/2019 19/05/2019
		PARÁMETRO DARÁ	
Temp OX Temp	p OX Temp	- COUCHELING LAND	METRO PARÁMETRO
		OX Temp OX	Temp OX Temp
om am pm am pm am pn	om am pm am pm	am pm am pm am pm	am pm am pm am pm
	28.2 3.4 8.2 27.6 29.2	4.1 8.4 27.3 29.7 4.4 9.3	27.6 28.7 3.4 8.9 27.2 29.2
	28.7 4.1 10.3 28.0 28.4	4.6 9.7 27.7 28.7 4.7 9.0	27.4 28.5 4.0 11.4 27.4 28.8
9.3 27.8 28.3 3.7 8.9 27.9 2	28.6 4.2 8.4 27.6 29.2	4.2 8.7 27.2 29.0 4.4 10.7	27.2 28.8 4.2 9.2 27.7 30.0
21/05/2019 22/05/2019	23/05/2019	24/05/2019 25/0	05/2019 26/05/2019
PARÁMETRO PARÁMETRO	PARÁMETRO		METRO PARÁMETRO
(Temp OX Temp	p OX Temp	OX Temp OX	Temp OX Temp
	om am pm am pm	am pm am pm am pm	am pm am pm am pm
	28.9 3.0 9.0 27.8 29.5	3.5 8.6 27.6 29.1 3.2 7.2	27.1 28.7 4.6 9.9 27.3 29.2
	29.2 3.1 9.1 29.9 29.8	3.9 8.7 28.1 29.2 3.2 7.3	27.0 28.8 3.6 9.4 27.2 29.9
10.4 29.4 29.9 3.5 9.6 28.0 2	29.1 3.2 9.3 29.8 31.1	3.6 8.9 28.5 29.6 3.1 7.6	27.4 28.8 3.4 8.2 27.2 28.8
e =0		11/1.00	u)
Tion (a)		efection	
ire Castro.		Ing. Ac. Ronald Mejillor	nes Garcia PLIMONA
de Guayaquil		Responsable de	- 2011(//1
iclas Naturales.		Camaronera Plu	e Campo umont S.A RUC: 0991301
sta			
		Ponald Marin	
			Garcia
		avitutu mejillones	
		ING. ACUICULT Resp. Técnico de C PLUMONT S	OR
	encias Naturales. sista		Ronald Metillones

Anexo 12. Tabla de registro de parámetros de Oxígeno y Temperatura semana 9 - 12

					-						Bi	tácora d	e pará	metros	de medi	ción					_			_		-		
-											0	XIGENO	DISUEL	TO, TE	MPERAT	URA									-		-	
			0.75.31							2000				PLUMO								2057/2						
SEMANA 9				1112-111																								
			5/2019			-	5/2019				5/2019				35/2019			_	5/2019				6/2019			-	5/2019	
PISCINA /		_	METRO			-	METRO			-	METRO			-	METRO			-	METRO			-	METRO)		-	METRO	
ESTANQUE	(X	Te	mp	(XC	Te	emp	0	X	Te	mp	(X	Te	mp	(X	Te	mp	(XC	T	emp	(X	Ter	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	-	pm	am	pm	am	pm	am	pm	am	-	am	pm
#6	4.4	10.1	27.3	28.2	3.0	9.7	26.6	28.5	3.4	8.4	27.2	27.2	2.1	8.0	26.2	27.2	3.0	7.8	26.6	28.4	3.3	7.5	27.0	28.2	3.4	10.4	27.4	29.6
#7	3.5	7.9	27.2	28.0	1.2	10.6	27.0	30.1	3.8	9.3	27.3	27.3	5.0	9.5	26.1	27.0	5.3	12.3	26.7	29.5	3.8	7.9	27.1	28.7	4.0	10.6	27.8	30.3
#30	3.6	8.7	27.5	27.5	5.5	10.50	26.4	28.5	3.7	8.0	27.0	26.0	3.5	9.0	26.0	27.0	4.4	7.4	26.6	28.5	3.6	8.1	27.1	28.6	3.4	9.9	27.3	29.4
SEMANA 10	1																											
		3/0	5/2019			4/0	6/2019			5/06	/2019			6/0	6/2019			7/0	6/2019			8/0	6/2019			9/06	5/2019	
PISCINA /		PARA	METRO			PAR	METRO			PARÁ	METRO			PARA	METRO			PARA	METRO			PARA	METRO			PARÁ	METRO	
ESTANQUE	(X	Te	mp	(XC	Te	emp	0	Χ	Te	mp	(X	Te	mp	(X	Te	mp	(XC	T	emp	(X	Ter	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	3.6	7.7	27.4	27.8	3.5	8.6	26.2	26.8	3.4	4.8	25.9	27.4	4.3	11.1	26.2	28.2	3.8	7.5	28.1	26.4	5	8.2	25.7	27.7	6.2	7.4	25.8	26.1
#7	3.3	7.5	27.1	28.1	3.3	4.4	26.5	27.2	3.4	10.6	26.3	27.8	5.4	10.3	26.9	28.6	3.5	8.6	27.5	27.2	5.3	7.3	25.9	27.7	4.9	7.3	25.8	26.3
#30	3.7	7.6	27.5	27.7	3.5	8.40	26.1	26.2	4.0	9.8	25.6	27.8	4.2	8.3	26.6	27.6	3.4	7.7	27.1	26.4	4.2	12.2	25.9	25.9	4.1	9.7	25.7	28.5
SEMANA 11	1																											
JUNIO 14		10/0	6/2019			11/0	6/2019			12/0	6/2019			13/0	06/2019			14/0	06/2019			15/0	06/2019			16/0	6/2019	
PISCINA /		PARÁ	METRO			PARA	METRO		111251	PARÁ	METRO			PARA	METRO			PARA	METRO			PARA	METRO)		PARÁ	METRO	
ESTANQUE	(X	Te	mp	(XC	Te	emp	0	Χ	Te	mp	(X	Te	mp	(X	Te	mp	(DX	T	emp	(X	Ter	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	5.5	7.5	24.6	25.6	5.4	8.4	24.4	26.1	3.8	7.8	26.7	27.5	4.8	8.7	26.2	26.4	5.0	8.1	25.5	25.2	4.2	10.7	25.2	29.1	4.7	8.6	26.1	27.1
#7	4.9	7.9	24.9	25.8	5.1	8.4	24.9	26.4	4.3	10.5	27.0	27.7	4.6	8.3	26.4	26.8	4.2	8.5	25.7	26.1	4.6	9.6	25.5	27.5	4.0	8.9	26.8	26.0
#30	4.2	10.1	26.3	29.3	3.7	8.50	27.9	27.5	3.2	10.3	27.1	27.4	3.1	10.4	25.8	26.4	3.8	8.0	25.7	26.0	4.2	9.5	25.4	28.40	3.5	8.0	27	26.5
SEMANA 12	1																											
		17/0	6/2019			18/0	6/2019			19/0	6/2019			20/0	06/2019			21/0	06/2019			22/0	06/2019		Т	23/0	6/2019	
PISCINA /			METRO			-	METRO				METRO			-	METRO			-	METRO	-		-	METRO			_	METRO	
ESTANQUE		X	Te	mp	(XC	Te	emp	0	χ	Te	mp	(X	Te	qm	(X	Te	mp	(XC	T	emp	(X	Ter	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	4.1	7.9	29.7	26.1	3.8	7.4	27.5	27.9	5.9	8.4	25.8	27.7	6.3	8.2	25.4	23.6	5.9	7.1	24.5	25.4	6.1	7.2	23.4	24.4	5.9	.8.3	23.9	25.3
#7	4.3	8.3	26.4	26.4	3.9	7.7	26.1	26.9	5.3	8.5	26.2	25.7	5.0	7.9	25.8	26.1	4.3	7.6	24.9	25.1	4.3	7.3	24.3	24.9	5.6	8.4	24.4	25.2
#30	4.2	8.2	26.9	27.0	4.3	8.4	25.3	27.4	5.6	9.1	24.3	25.9	5.1	8.2	24.7	26.7	5.2	7.3	24.7	25.7	5.5	8.0	24.0	26.2	5.2	9.3	24.3	26.0
				Univ	ladys Fi versidad id de Ci	reire Ca d de Gu encias I	stro.	š.												Rona	Respon amaron Id M	nsable d	nes Garde Camp JMONT	o s.a Garci i	a	PL I RUC	UM(: 099	ONT S 1301208
																				Resp	. Téc	ionico ION	de C	amno)			

Anexo 13. Tabla de registro de parámetros de Oxígeno y Temperatura semana 13 - 16

												tácora de	-															
											0	XIGENO I	DISUEL	TO, TE	MPERAT	URA					_							
												Camai	ronera	PLUM	A.2 TAC													
SEMANA 13																					,							
			6/2019				6/2019				6/2019				06/2019				06/2019				06/2019	_			6/2019	
PISCINA /		_	METRO			_	METRO				METRO				METRO	_		_	METRO				METRO			_	METRO	
ESTANQUE	_	X	Ter	mp	(XC	Te	mp	0	X	Te	mp	(X	Te	mp	-	X		mp		XC	T	emp	(X	Te	mp
	am	1		pm		pm	am	pm	am	pm	am	pm	am	Proceedings	am	pm	-	pm	_	pm	am	-	am	pm	-	pm	am	pm
#6	6.3	9.7	24.7	29.1	5.9	9.1	25.4	27.5	5.3	8.6	25.5	27.4	5.0	8.6	25.3	27.0	5.3	8.2	25.7	27.7	6.2	7.4	25.8	26.3	5.5	7.2	24.6	25.6
#7	5.9	9.5	25.6	26.4	6.9	9.3	26.0	26.9	5.1	7.9	25.8	27.5	4.2	8.4	25.8	26.4	5.0	7.3	25.9	27.7	4.9	7.3	25.8	26.2	4.9	7.4	24.9	25.8
#30	5.5	8.5	24.3	27.2	5.8	9.20	26.2	27.1	5.5	8.0	26.2	27.9	4.9	8.0	25.7	27.9	5.9	8.4	26.0	27.2	6.1	7.6	25.3	26.9	5.1	7.7	24.2	25.6
	1																											
SEMANA 14	_	1 /0	7/2019	_		2/0	7/2019			2/0	7/2019			AIC	7/2019			F/0	7/2019			cle	7/2019			7/0	7/2019	
DICCINIA /	-		METRO	-			METRO		-	_	METRO		-		METRO	-			METRO	-			ÁMETRO		-	-11	METRO	
PISCINA / ESTANQUE	-	X	Tei		-	DX		mp	0			mp	-)X	_	mp	-	DX		mp		OX	_	emp	-)X		gm
ESTANQUE	-			-		_	-		_	_	-	1	_		_			_	-	-	_	_	_		_		_	-
#6	am 5.4	9.4	am 23.4	pm 24.4	am 5.9	pm 8.3	am	pm 25.3	6.3	pm 9.7	am	pm 29.1	am 5.9	-	am 25.4	pm 27.5	am 5.3	pm 8.6	am 25.5	pm 27.1	am 5.0	pm 8.6	am 25.3	pm 27.1	am 5.0	pm 8.2	am 25.7	pm 27.7
	-	-	24.3	_	5.6	-	23.9	25.2	5.9	9.7	24.7	26.4	-	9.1	_	26.9	-	7.9	25.8	27.1	4.2	8.4	25.8	26.4	4.9	7.3	25.7	27.7
#7	5.6	8.2	24.3	24.9	5.6	8.2	25.2	26.2	5.9	9.5	26.1	27.7	6.9 5.7	9.3	26.0	26.9	5.1	7.9	25.8	27.7	5.2	8.4	25.8	26.80	5.3	7.1	25.9	27.9
SEMANA 15		8/0	7/2019			9/0	7/2019			10/0	7/2019			11/0	07/2019			12/0	07/2019			13/	07/2019			14/0	7/2019	
PISCINA /		PARÁ	METRO			PARÁ	METRO			PARÁ	METRO			PAR	METRO			PARA	METRO			PAR	ÁMETRO)		PARÁ	METRO	
ESTANQUE	0	X	Ter	mp	(XC	Te	mp	0	Χ	Te	mp		X	Te	mp	(XC	Te	mp		XC	T	emp	(X	Te	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	5.4	7.9	24.6	27.8	5.3	9.0	25.1	26.1	5.0	8.6	25.1	28.7	4.9	8.6	25.3	27.0	4.1	7.9	29.7	26.1	4.1	7.4	27.5	27.9	4.5	8.4	28.2	28.6
#7	4.9	8.1	24.8	27.9	5.3	8.4	25.1	27.4	4.2	5.3	28.7	27.0	5.1	8.4	25.8	26.4	4.3	8.3	26.4	26.4	3.9	7.7	26.1	26.9	3.9	8.2	28.5	28.8
#30	5.0	9.8	25.1	27.7	5.0	8.5	25.2	28.3	4.9	9.5	25.5	28.2	5.3	8.0	25.7	27.9	4.2	8.2	26.9	27.0	4.3	8.4	25.3	27.4	4.6	8.3	29.1	28.5
SEMANA 16	1																											
		15/0	7/2019			16/0	7/2019			17/0	7/2019			18/	07/2019			19/0	7/2019			20/	07/2019			21/0	7/2019	
PISCINA /		PARÁ	METRO			PARÁ	METRO			PARÁ	METRO			PARA	METRO			PARA	METRO			PAR	ÁMETRO)		PARA	METRO	
ESTANQUE	(X	Ter	mp	(XC	Te	mp	0	Χ	Te	mp	(X	Te	mp	(XC	Te	mp		XC	T	emp	(X	Te	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	4.4	9.8	27.3	28.2	4.7	8.6	26.1	27.1	4.1	7.9	26.1	29.7	3.7	8.4	24.8	25.8	3.7	10.8	24.9	26.1	4.8	8.6	26.1	27.1	4.2	.8.4	25.1	25.8
#7	3.5	7.9	27.2	28.0	4.0	8.9	26.8	26.0	4.3	8.3	26.4	27.5	3.8	9.3	25.0	25.8	4.0	8.5	25.0	25.3	4.5	9.1	26.8	26.5	3.9	9.3	25.0	25.8
#30	4.0	8.7	27.5	27.5	3.5	8.0	26.5	27.0	4.2	8.2	26.9	27.0	3.8	9.1	24.7	25.9	3.6	7.9	24.6	24.8	3.6	8.0	26.5	27.3	3.8	9.1	24.7	25.9
			Q	Jac	WAR THE THE PARTY OF THE PARTY	fair)	9														de	felle	v)					

Gladys-Freire Castro. Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista Ing. Ac. Ronald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A PLUMONT S.A. RUC: 0991301208001

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 14. Tabla de registro de parámetros de Oxígeno y Temperatura semana 17 - 18

											Bi	tácora d	e parár	netros	de med	ición					-			100000				
											. 0	XIGENO	DISUEL	TO, TE	MPERAT	URA												
												Cama	ronera	PLUM	A.2 TNC													
SEMANA 17			oreconstruc-																									
		22/0	7/2019			23/0	7/2019			24/0	7/2019			25/	07/2019			26/	7/2019			27/	07/2019			28/0	7/2019	
PISCINA /		PARA	METRO			PARÁ	METRO			PARÁ	METRO			PAR	METRO			PARA	METRO			PARA	METRO)		PARA	METRO	
ESTANQUE	(OX	Te	mp	-	OX	Te	emp	C	Χ	Te	mp	(X	Te	mp	-	OX	Te	mp		OX	T	emp	(X	Te	mp
	am	pm	am	pm	am	pm ·	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	4	7.6	25.1	26.1	2.3	7.6	27.6	27.9	4.6	8.3	26.4	27.2	4.6	8.5	26.2	27.1	4.2	8.1	26.1	27.8	3.9	8.4	24.9	25.8	3.7	8.9	25.1	26.3
#7	4.3	8.1	26.4	26.4	3.9	7.7	26.2	26.9	4.2	8.5	25.9	26.6	4.0	8.7	26.8	26	4.3	8.3	26.4	27.5	3.8	9.3	25.1	25.8	4.0	8.5	25	25.6
#30											- Suppose			120														
																										-		100000
SEMANA 18																												
		29/0	7/2019			30/0	7/2019			31/0	7/2019			1/0	8/2019			2/0	8/2019			3/0	8/2019			4/0	8/2019	
PISCINA /		PARA	METRO			PARÁ	METRO			PARÁ	METRO			PAR	METRO			PARA	METRO			PARA	METRO)		PARA	METRO	
ESTANQUE	(XC	Te	mp		OX	Te	emp	0	X	Te	mp	0	X	Te	mp		OX	Te	mp		OX	T	emp	0	X	Te	mp
	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm	am	pm
#6	4.2	7.5	27.6	27.8	4.5	8.4	25.8	27.3	5.1	7.9	24.9	27.9	5.2	7.9	25.2	26.1	4.9	8.7	25.6	27.3	4.9	8.9	25.3	26.9				-
#7	4.1	7.8	26.2	26.9	3.9	8.2	25.9	27.6									With the									1		
	-		-		_	-	_	_	-	CONTRACTOR OF THE PARTY OF	-	The second second	_	-		_	_	-	_	_	-	-	-	_		-	-	

PLUMONT S.A. RUC: 0991301208001

Ing. Acc Ronald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Metillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Fuente: (Freire, 2019)

Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista

Anexo 15. Tabla de registro de parámetros de Turbidez y Salinidad

		Bitácora de parámetros de medición	
		TURBIDEZ, SALINIDAD	
		Camaronera PLUMONT S.A	
Toma de dato:	Semanal		

		3/04/2	2019	1	10/04/	2019		1/05/2	2019	1	10/05/	2019
PISCINA /	P	ARÁM	ETRO	· P	ARÁM	ETRO	P	ARÁN	ETRO	P	ARÁM	ETRO
ESTANQUE	Turb	idez	Salinidad	Turbidez CM CL	Salinidad	Turb	idez	Salinidad	Turb	idez	Salinidad	
	CM	CL	PPM	CM	CL	PPM	CM	CL	PPM	Cm	CL	PPM
#6							40	VO	25	40	٧	25
#7							40	VO	24	50	С	25
#30	35	VV	21	50	VA	23	40	VO	25	40	٧	24

		23/05/	2019		31/05/	2019	- 1	5/06/2	2019		18/05/	2019
PISCINA /	-	PARÁN	IETRO	-	PARÁN	IETRO	1	PARÁM	IETRO	-	PARÁM	ETRO
ESTANQUE	Turl	oidez	Salinidad	Turl	bidez	Salinidad	Turl	bidez	Salinidad	Turl	oidez	Salinidad
	CM	CL	PPM									
#6	40	VA	25	45	VA	26	45	VA	26	45	VA	26
#7	40	VA	25	45	VA	26	45	VA	26	30	VO	26
#30	40	VA	25	45	VA	26	40	VO	25	40	VO	27

		22/06/	2019		28/06/	2019		18/07/	2019
PISCINA /	-	PARÁN	IETRO		PARÁN	IETRO		PARÁM	ETRO
ESTANQUE	Turl	oidez	Salinidad	Turl	oidez	Salinidad	Tur	oidez	Salinidad
	CM	CL	PPM	CM	CL	PPM	CM	CL	PPM
#6	45	VA	25	40	VO	25	45	VA	26
#7	45	VO	25	45	VO	25	30	VO	26
#30	40	VO	28	50	VA	25	40	VO	26

Turbidez

	Indicativos	
VO	Verde Oscuro	
VA	Verde Amarillo	
С	CAFÉ	
VV	Verde verde	

	Referencia
cm	Centímetros
CL	color
ppm	Partes por millón

PLUMONT S.A. RUC: 0991301208001

Gladys Freire Castro. Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista Ing. Ac/ Ronald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 16. Tabla de registro de parámetro de alimentación semana 1 - 4

						Bitácora	de pará	metros de	medición	1					
						Ва	lanceado	/Alimenta	ción						
						Car	naronera	PLUMON	r s.A						
SEMANA 1					***************************************										
	1/0	4/2019	2/0	4/2019	3/04	/2019	4/04	1/2019	5/04	1/2019	6/0	/2019	7/0	1/2019	
PISCINA/	PARA	ÁMETRO	PARA	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alim	entación	Alim	entación	Alime	ntación	Alime	entación	Alime	entación	Alime	ntación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6															0
#7															0
#30					55	#2	60	#2	60	#2	75	#2	75	#2	325

	TIPO DE BALA	NCEADO	
#	TIPO	%	MARCA
#2	LORICA	42%	SKRETTING
#4	NATURE WELLNESS	35%	SKRETTING
#5	OPTILINE	35%	SKRETTING

SEMANA 2															
	8/04	1/2019	9/0	4/2019	10/04	/2019	11/0	4/2019	12/0	4/2019	13/0	4/2019	14/0	4/2019	
PISCINA /	PARÁ	METRO	PARA	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alime	ntación	Alime	Alimentación Alimentació		ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6						- Levense					125	#2	125	#2	250
#7		A Marie			50	#2	50	#2	50	#2	50	#2	50	#2	250
#30	75	#2	75	#2	75	#2	125	#4	125	#4	125	#4	125	#4	725

SEMANA 3															
	15/0	4/2019	16/0	04/2019	17/04	/2019	18/0	4/2019	19/0	4/2019	20/0	14/2019	21/0	4/2019	
PISCINA /	PARÁ	METRO	PARÁ	METRO	PARÁN	//ETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARA	METRO	PARÁMETRO
ESTANQUE	Alime	entación	Alime	entación	Alime	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alim	entación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	125	#2	125	#2	125	#2	125	#2	175	#2	175	#2	175	#2	1025
#7	50	#2	50	#2	50	#2	50	#2	50	#2	65	#4	65	#4	380
#30	125	#4	125	#4	125	#4	125	#4	125	#4	150	#4	150	#4	925

SEMANA 4															
	22/0	4/2019	23/0	04/2019	24/04	/2019	25/0	4/2019	26/0	4/2019	27/0	4/2019	28/0	4/2019	
PISCINA/	PARÁ	METRO	PARÁ	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	entación	Alim	entación	Alime	ntación	Alime	entación	Alime	ntación	Alime	ntación	Alime	entación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	175	#4	175	#2	175	#2	175	#2	175	#2	225	#4	225	#4	1325
#7	65	#4	65	#4	65	#4	65	#4	65	#4	100	#4	100	#4	525
#30	150	#4	150	#4	150	#4	150	#4	150	#4	150	#5	150	#5	1050

PLUMONT S.A RUC: 0991301208001

doladys Freire Castro.
Universidad de Guayaquil
Facultad de Ciencias Naturales.
Tesista

Ing. Ac. Ronald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 17. Tabla de registro de parámetro de alimentación semana 5 - 8

						Bitácon	a de pará	metros de	medición	ı					
						Ва	lanceado	/Alimenta	ción	7					
						Car	maronera	PLUMON	T S.A				*		
SEMANA 5] '												0//		
	29/0	4/2019	30/0	04/2019	1/05	/2019	2/05	/2019	3/05	/2019	4/0	5/2019	5/05	5/2019	
PISCINA/	PARÁ	METRO	PARA	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	entación	Alim	entación	Alimer	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipó	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	225	#4	225	#4	225	#4	225	#4	225	#4	275	#4	275	#4	1675
#7	100	#4	150	#4	150	#4	150	#4	100	#4	100	#4	150	#4	900
#30	150	#5	300	#5	400	#5	400	#5	300	#5	300	#5	300	#5	2150

	TIPO DE BALA	NCEADO	
#	TIPO	%	MARCA
#2	LORICA	42%	SKRETTING
#4	NATURE WELLNESS	35%	SKRETTING
#5	OPTILINE	35%	SKRETTING

SEMANA 6										-10000	1	- 6	1 2 6	-1	
	6/0	5/2019	7/0	5/2019	8/05	/2019	9/0	5/2019	10/0	5/2019	11/0	5/2019	12/0	5/2019	
PISCINA/	PARÁ	METRO	PAR	METRO	PARÁN	/IETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	entación	Alim	entación	Alimei	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	275	#4	275	#4	275	#4	275	#4	300	#4	275	#4	275	#4	1950
#7	525	#4	400	#4	250	#4	300	#4	225	#4	225	#4	200	#5	2125
#30	400	#5	700	#5	600	#5	500	#5	400	#5	400	#5	- 400	#5	3400

SEMANA 7															
	13/0	5/2019	14/0	05/2019	15/05	/2019	16/0	5/2019	17/0	5/2019	18/0	5/2019	19/0	5/2019	
PISCINA /	PARÁ	METRO	PARA	METRO	PARÁN	//ETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	entación	Alim	entación	Alimei	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	200	#4	300	#4	200	#4	400	#4	300	#4	400	#5	350	#5	2150
#7	200	#5	300	#5	200	#5	350	#5	400	#5	400	#5	350	#5	2200
#30	600	#5	400	#5	500	#5	500	#5	400	#5	500	#5	700	#5	3600

SEMANA 8															
	20/0	5/2019	21/0	05/2019	22/05	/2019	23/0	5/2019	24/0	5/2019	25/0	5/2019	26/0	5/2019	
PISCINA/	PARÁ	METRO	PAR/	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO.	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alimei	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	entación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	350	#5	350	#5	350	#5	300	#5	300	#5	300	#5	600	#5	2550
#7	350	#5	500	#5	500	#5	300	#5	300	#5	300	#5	400	#5	2650
#30	500	#5	500	#5	900	#5	900	#5	300	#5	600	#5	600	#5	4300

RUC: 099

Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista Ing. Ac. Ronald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 18. Tabla de registro de parámetro de alimentación semana 9 - 12

			2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Bitácor	a de pará	metros de	medición						
						Ba	lanceado	/Alimenta	ción						
						Ca	maronera	PLUMON	T S.A						
SEMANA 9															
	27/0	5/2019	28/0	05/2019	29/05	/2019	30/0	5/2019	31/0	5/2019	1/0	5/2019	2/0	6/2019	
PISCINA/	PARÁ	METRO	PAR/	METRO	PARÁN	VETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alimei	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	entación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	600	#5	400	#5	500	#5	200	#5	400	#5	400	#5	500	#5	3000
#7	300	#5	300	#5	200	#5	400	#5	300	#5	300	#5	400	#5	2200
#30	600	#5	700	#5	700	#5	500	#5	500	#5	250	#5	250	#5	3500

	TIPO DE BALA	NCEADO	
#	TIPO	%	MARCA
#2	LORICA	42%	SKRETTING
#4	NATURE WELLNESS	35%	SKRETTING
#5	OPTILINE	35%	SKRETTING

	3/06	5/2019	4/0	6/2019	5/06,	2019	6/08	5/2019	7/06	/2019	8/0	5/2019	9/06	5/2019	
PISCINA/	PARÁ	METRO	PARA	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alimer	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	200	#5	500	#5	500	#5	500	#5	600	#5	500	#5	500	#5	3300
#7	200	#5	200	#5	200	#5	400	#5	400	#5	100	#5	400	#5	1900
#30	300	#5	600	#5	600	#5	600	#5	600	#5	600	#5	600	#5	3900

SEMANA 11															
	10/0	6/2019	11/0	06/2019	12/08	5/2019	13/0	6/2019	14/0	6/2019	15/0	6/2019	16/0	6/2019	
PISCINA/	PARÁ	METRO	PARA	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alime	ntación	Alime	entación	Alime	ntación	Alim	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	500	#5	450	#5	500	#5	400	#5	600	#5	500	#5	500	#5	3450
#7	300	#5	300	#5	400	#5	400	#5	450	#5	400	#5	400	#5	2650
#30	700	#5	600	#5	400	#5	300	#5	600	#5	300	#5	225	#5	3125

SEMANA 12															
	17/0	6/2019	18/0	06/2019	19/08	5/2019	20/0	6/2019	21/0	6/2019	22/0	6/2019	23/0	6/2019	
PISCINA/	PARÁ	METRO	PAR	METRO	PARÁN	VETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alimer	ntación	Alime	entación	Alime	ntación	Alime	entación	Alime	entación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	400	#5	275	#5	400	#5	400	#5	600	#5	600	#5	400	#5	3075
#7	450	#5	300	#5	450	#5	450	#5	450	#5	600	#5	500	#5	3200
#30	225	#5	700	#5	700	#5	600	#5	700	#5	700	#5	225	#5	3850

PLUMONT S.A. RUC: 0991301208001

Universidad de Guayaquil
Facultad de Ciencias Naturales.
Tesista

Ing. Ac. RoHald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Mejillones García ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 19. Tabla de registro de parámetro de alimentación semana 13 - 16

								ámetros d		n								
						В	alancead	io/Aliment	ación	38								
	-					Ca	marone	ra PLUMOI	NT S.A		1							
SEMANA 13																		
		06/2019		06/2019	26/0	6/2019	27/	06/2019	28/0	06/2019	29/	06/2019	30/0	06/2019		128		
PISCINA /	PARA	METRO	PAR	ÁMETRO	PARÁ	METRO	PAR	ÁMETRO	PARA	ÁMETRO	PARA	ÁMETRO	PARA	ÁMETRO	PARÁMETRO		TIPO DE BALA	ANCEADO
ESTANQUE	Alim	entación	Alim	nentación	Alime	ntación	Alin	entación	Alim	entación	Alim	entación	Alim	entación	Alimentación	#	TIPO	% MARCA
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg	#2	LORICA	42% SKRETTIN
#6	500	#5	400	#5	400	#5	200	#5	500	#5	400	#5	200	#5	2600	#4	NATURE WELLNESS	35% SKRETTIN
#7	525	#5	450	#5	450	#5	575	#5	700	#5	500	#5	500	#5	3700	#5	OPTILINE	35% SKRETTIN
#30	600	#5	600	#5	400	#5	600	#5	800	#5	600	#5	300	#5	3900	110	OFFICIAL	33/0 3KKLITIN
EMANA 14																		
	1/0	7/2019	2/0	07/2019	3/07	/2019	4/0	7/2019	5/0	7/2019	6/0	7/2019	7/0	7/2019	T			
PISCINA /	PARA	METRO	PAR	ÁMETRO	PARÁ	METRO	PAR	ÁMETRO	PARA	METRO		ÁMETRO		METRO	PARÁMETRO			
ESTANQUE	Alime	entación	Alim	entación	Alime	ntación	Alim	entación	Alim	entación	_	entación	-	entación	Alimentación			
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg			
#6	250	#5	150	#5	500	#5	500	#5	800	#5	500	#5	800	#5	3500			
#7	300	#5	200	#5	350	#5	300	#5	600	#5	350	#5	600	#5	2700			
#30	300	#5	300	#5	500	#5	300	#5	500	#5	300	#5	300	#5	2500			
					1		1 000	113	300	113	300	#3	300	#3	2500			
SEMANA 15	1																	
	8/0	7/2019	9/0	7/2019	10/0	7/2019	11/	07/2019	12/0	7/2019	1 13/0	07/2019	14/0	7/2019				
PISCINA /		METRO		ÁMETRO		METRO		METRO		METRO		METRO		METRO	PARÁMETRO			
ESTANQUE	Alime	ntación		entación	_	ntación	-	entación	_	entación	-	entación						
	kg	tipo	kg	tipo	kg	tipo	kg	tipo			_			entación	Alimentación			
#6	500	#5	600	#5	1300	#5	400	#5	600	tipo #5	kg 300	tipo	kg	tipo	TOTAL/kg			
#7	500	#5	500	#5	800	#5	300	#5	500		-	#5	300	#5	4000			
#30	300	#5	300	#5	400	#5	300	#5	_	#5	150	#5	150	#5	2900			
#30	300	#3	300	#3	400	#5	300	#5	300	#5	300	#5	300	#5	2200			
EMANA 16	1																	
LIVINIA 10	_	7/2019	16/	07/2019	17/0	7/2019	1 10/	07/2019	1 40/0	7/2019	1							
PISCINA /		METRO		METRO		METRO	-	METRO				07/2019	_	7/2019				
ESTANQUE	_	ntación	-	entación	-		-			METRO	_	METRO		METRO	PARÁMETRO			
ESTANQUE		-	-		_	ntación	-	entación		ntación	1	entación	_	entación	Alimentación			
40	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL /kg			*
#6	300	#5	700	#5	900	#5	600	#5	1000	#5	700	#5	700	#5	4900			
The second second second	150	#5	500	#5	600	#5	600	#5	600	#5	500	#5	500,	#5	3450		PLUMON	TCA
#30	500	#5	500	#5	700	#5	300	#5	300	#5	400	#5	100	#5	2800		THOMEON	1 O.A.
			Clad	as that	W S								16	aller .			RUC: 099130	1208001
		(Gladys	Freire Cast	ro.							Ing. Ac	Ronald	Mejillones	s Garcia			
		ı	Jniversid	lad de Guay	aquil									le de Cami				
				Ciencias Na										PLUMONT				
				Tesista								Guii		· LOINONI	war 1			

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 20. Tabla de registro de parámetro de alimentación semana 17 - 18

						Bitácor	a de pará	metros de	medición	V					
						Ва	lanceado	/Alimenta	ción	8					
						Car	maronera	PLUMON	T S.A						
SEMANA 17															
	22/0	7/2019	23/0	07/2019	24/07	7/2019	25/0	7/2019	26/0	7/2019	27/0	7/2019	28/0	7/2019	
PISCINA /	PARÁ	METRO	PARA	METRO	PARÁN	VETRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alimer	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	ntación	Alimentación
	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	400	#5	400	#5	300	#5	300	#5	300	#5	200	#5	200	#5	2100
#7	200	#5	275	#5	400	#5	400	#5	400	#5	500	#5	300	#5	2475
#30			I COLD						to en			Value of the			

	TIPO DE BALA	NCEADO	
#	TIPO	%	MARCA
#2	LORICA	42%	SKRETTING
#4	NATURE WELLNESS	35%	SKRETTING
#5	OPTILINE	35%	SKRETTING

SEMANA 18															
	29/0	7/2019	30/0	7/2019	31/07	7/2019	1/08	3/2019	2/08	3/2019	3/0	8/2019	4/0	8/2019	
PISCINA /	PARÁ	METRO	PARA	METRO	PARÁN	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁ	METRO	PARÁMETRO
ESTANQUE	Alime	ntación	Alim	entación	Alime	ntación	Alime	ntación	Alime	ntación	Alime	entación	Alime	entación	Alimentación
043,043,043,041,042	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	kg	tipo	TOTAL/kg
#6	200	#5	200	#5	200	#5	200	#5	200	#5	200	#5			1200
#7	300	#5	300	#5	300	#5									900
#30															0

PISCINA /	PARÁMETRO
ESTANQUE	Alimentación
100	TOTAL / KG
#6	42050
#7	35105
#30	42250

Glady Freire Castro. Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista Ing. Ac. Rorald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Metillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 21. Tabla de registro de datos Supervivencia - Mortandad

		Tabla de Valores	
		Sobrevivencia - Mortandad	
		Camaronera PLUMONT S.A	
Tiempo de Muestreo:	Semanal		

		-	ISCINA/ESTANO	QUE #30					PISCINA/ESTAN	QUE#7					PISCINA/ESTAM	VQUE #6	
			PARÁMETE	RO					PARÁMET	RÓ					PARÁMET	'RO	- A
Fecha	Alimento Sem. KG/Ha/Dia	w Peso (gr)	Incremento Peso (gr)	% Sobrevivencia	% Mortandad	Fecha	Alimento Sem. KG/Ha/Dia	w Peso (gr)	Incremento Peso (gr)	% Sobrevivencia	% Mortandad	Fecha	Alimento Sem. KG/Ha/Dia	w Peso (gr)	Incremento Peso (gr)	% Sobrevivencia	% Mortandad
2/04/2019		0	0														
9/04/2019	12.34	1.0	1.0	94	6	9/04/2019		0									
16/04/2019	21.43	2.0	1.0	90	10	16/04/2019	10.00	0.5	0.5	94	6	16/04/2019	8.83	0			
23/04/2019	25.32	3.0	1.0	86	14	23/04/2019	11.71	1.5	1.0	90	10	23/04/2019	19.87	0.75	0.8	94	6
30/04/2019	31.17	4.0	1.0	82	18	30/04/2019	18.43	2.5	1.0	86	14	30/04/2019	25.16	1.75	1.0	90	10
7/05/2019	72.73	5.5	1.5	80	20	7/05/2019	45.00	3.75	1.3	82	18	7/05/2019	31.34	2.75	1.0	86	14
14/05/2019	85.71	7.25	1.8	76	24	14/05/2019	48.57	5.5	1.8	82	18	14/05/2019	35.32	4.0	1.3	82	18
21/05/2019	93.51	9.0	1.8	74	26	21/05/2019	72.86	7.5	2.0	78	22	21/05/2019	44.15	5.5	1.5	78	22
28/05/2019	119.48	11.0	2.0	70	30	28/05/2019	87.14	9.5	2.0	78	22	28/05/2019	100.00	7.0	1.5	76	24
4/06/2019	80.52	13.0	2.0	68	32	4/06/2019	84.29	11.75	2.3	78	22	4/06/2019	47.68	8.5	1.5	74	26
11/06/2019	111.69	15.5	2.5	64	36	11/06/2019	88.57	14.0	2.3	84	16	11/06/2019	63.57	10.5	2.0	72	28
18/06/2019	71.43	17.5	2.0	62	38	18/06/2019	92.86	16.0	2.0	84	16	18/06/2019	60.04	12.5	2.0	70	30
25/06/2019	107.14	21.0	3.5	62	38	25/06/2019	97.86	18.25	2.3	84	16	25/06/2019	67.10	14.5	2.0	70	30
2/07/2019	93.51	23.5	2.5	62	38	2/07/2019	92.14	21.0	2.8	84	16	2/07/2019	40.61	16.5	2.0	69	31
9/07/2019	110.39	25.5	2.0	60	40	9/07/2019	91.43	23.75	2.8	84	16	9/07/2019	74.17	18.5	2.0	66	34
16/07/2019	133.77	28.0	2.5	60	40	16/07/2019	91.43	26.5	2.8	84	16	16/07/2019	68.87	20.75	2.3	64	36
23/07/2019	71.43	28.21	0.2	64	36	23/07/2019	98.57	29.25	2.8	84	16	23/07/2019	91.82	23.0	2.3	64	36 -
						30/07/2019	85.71	31.5	2.3	84	16	30/07/2019	68.87	26.0	3.0	64	36
												4/08/2019	64.89	29.0	3.0	64	36

Sladys Freire Castro.
Universidad de Guayaquil
Facultad de Ciencias Naturales.

ing. Ac. Bonald Mejillones Garcia Responsable de Campo Camaronera PLUMONT S.A

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 22. Tabla de registro de Datos de Producción Piscinas #6 #7 #30

Datos de Producción Camaronera PLUMONT S.A

Pisc	na #6
Datos de	Producción
Cosech	a Actual
Fecha de Siembra:	13 de Abril del 2019
Total de siembra:	1500000
Total de Libras cosechadas:	56000
Peso/ camarón	29 gr
Liras producidas /ha:	6922.126082
Densidad:	185414.0915
Sobrevivencia:	64%
Conversión:	1.65
Total de aireadores	6

Piscle	a #7
Datos de Pi	roducción
Cosecha	Actual
Fecha de Siembra:	9 de Abril del 2019
Total de siembra:	700000.00
Total de Libras cosechadas:	46000
Peso/ camarón	31.5gr
Liras producidas /ha:	9200
Densidad:	140000.00
Sobrevivencia:	84%
Conversión	1.67
Total de aireadores	3

Piscina #30							
Datos de Prode	ucción PISCINA #30						
Cosecha Actual							
Fecha de Siembra:	03 de Abril del 2019						
Total de siembra:	1450000.00						
Total de Libras cosechadas:	61659						
Peso/ camarón	28.21gr						
Liras producidas /ha:	11210.72727						
Densidad:	263636						
Sobrevivencia:	64%						
Conversión	1.52						
Total de aireadores	6						

PLUMONT S.A. RUC: 0991301208001

Gladys Feire Castro. Universidad de Guayaquil Facultad de Ciencias Naturales. Tesista

Responsable de Campo Camaronera PLUMONT S.A

Ronald Mejillones Garcia ING. ACUICULTOR Resp. Técnico de Campo PLUMONT S.A.

Anexo 23. Resultado de Análisis Fisicoquímico

Prepared by: Internal Reference: QRN°500

Liliana Merchán

Requested on: Sumitted on:

16-jul-19 18-jul-19

INFORMES DE RESULTADOS

Datos de Clientes:

Cliente: Dirección a Zona:

Key Account /El Morro

16-jul-19

Solictado por: Mustreo Realizado por: Freddy_Villao Skretting

Piscinas Acuícolas

Datos de la Muestra:

Tipo: Análisis Solicitado: Cantidad: Envase:

Agua Físico - Químico

Fundas cerradas y conservadas en frío

Resultados:

PARÁMETROS	Ph (Agua)	Alcalinidad ppm CaCO3	Nitrito ppm NO2	Nitrato ppm NO3	Fosfato ppm PO4
Piscina	7.5 - 8.5	80 - 200	< 0.1	0.2-10	0,4-0,6
30	8.11	155.80	< 0.01	1.99	1.08
6	7.91	155.80	<0.01	3.89	0.26
7	7.57	136.80	< 0.01	0.61	0.54

Metodos de Referencia:

pH	Potenciómetro
Alcalinidad	Standard Methods. APHA, 1992 (Método Titulométrico)
Amonio Toxico	HACH, 2000 (Salicylate Method-8155)
Nitrito	Standard Methods. APHA, 1985 (Método de la sulfanilamida)
Nitrato	HACH (Cadmium Reduction Method-8039)

Blga. Silvia Medranda Jefe de Laboratorio de Servicios Acuícolas

Anexo 24. Resultados de Permeabilidad Muestras de Suelo Piscina #6

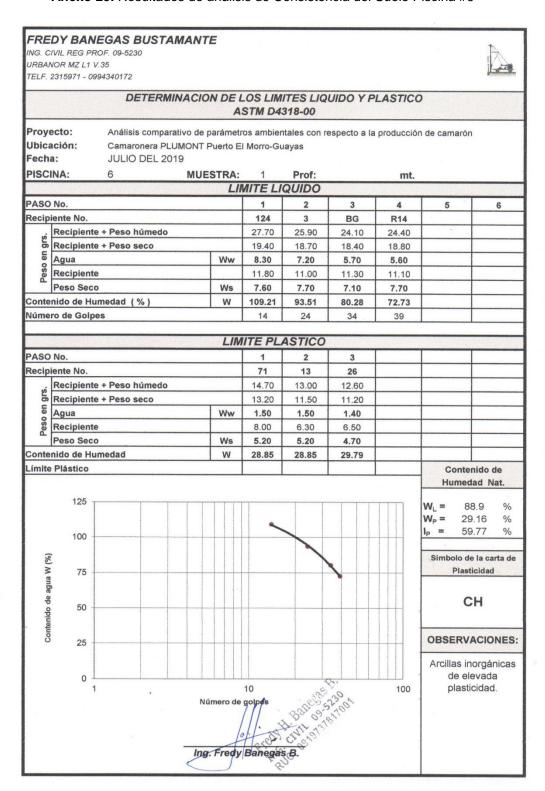
				ING. CI	VIL REG. PROF.	BUSTAMANT 09 - 5230 2315971 - 0994340172	E				
		EN:	SAYO DE P	ERMEA	BILIDA	D - CARG	A VAR	ABLE			
ROYECTO: BICACIÓN: DLICITA: Gladys M	Camaronera PLU		etros ambientales El Morro-Guayas MU	con respecto	•	ción de camarón. L PARA EMPLEAR C	OMO RELL	ENO IMPER			JULIO DEL 2019
	Tiempo Real	Tiempo Relativo	Altura de carga (h)		Fórmulo	General :			(Geometría del	Permeámetro:
	H: m: seg.	H: m: seg.	cm.								
	9:30:00		DEL 2019	K	= Lxa	In. <u>h1</u>		L	=	8	cm
	12:00:00	0:00:00	0.010								
	10:00:00	3 DE JULIO			Axt.	h2		A		31,1725	cm2
	8:00:00	4 DE JULIO						а	=	2,0106	cm2
	10:00:00	22:00:00	0.040	К	20°	x Cv. (cm/seg.)					
				T h1 h2 t	= 0.0	5 °C	0.8702			A = Sección o a = Sección o t = Tiempo d h1 = Altura d h2 = Altura d In = Logarira	del permeámetro (cm) del permeámetro (cm2) del tubo de carga. (cm2) del ensayo. (seg). de carga inicial (cm). de carga final (cm). no Natural. tte F(temperatura)
	Valor de K - c					[-	(- corregido:	
K	= 4.32E-06	cm/seg.				L		K	=	3.76E-06	cm/seg.
	BILIDAD RELATIVA	ENSAYADAS E	MUY BAJA PERM DURANTE 46 HORA JJO DE AGUA		EN EL CUAL	SE		CALCULAI	DO PO	OR : Ing. Fredy	Banesas 9, 1973 78170

Anexo 25. Resultados de Permeabilidad Muestras de Suelo Piscina #7

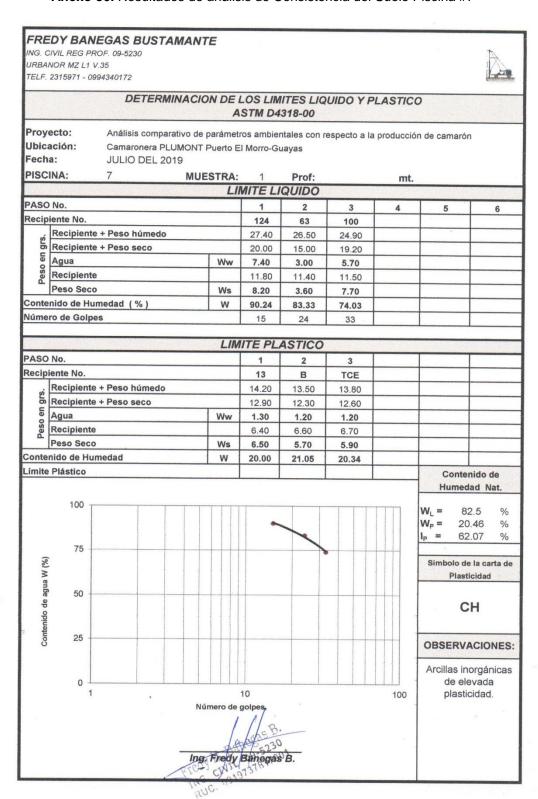
2019 tro:
tro:
tro:
metro (cm)
netro (cm2)
carga. (cm2)
(seg).
ial (cm).
al (cm).
ratura)
c

Anexo 26. Resultados de Permeabilidad Muestras de Suelo Piscina #30

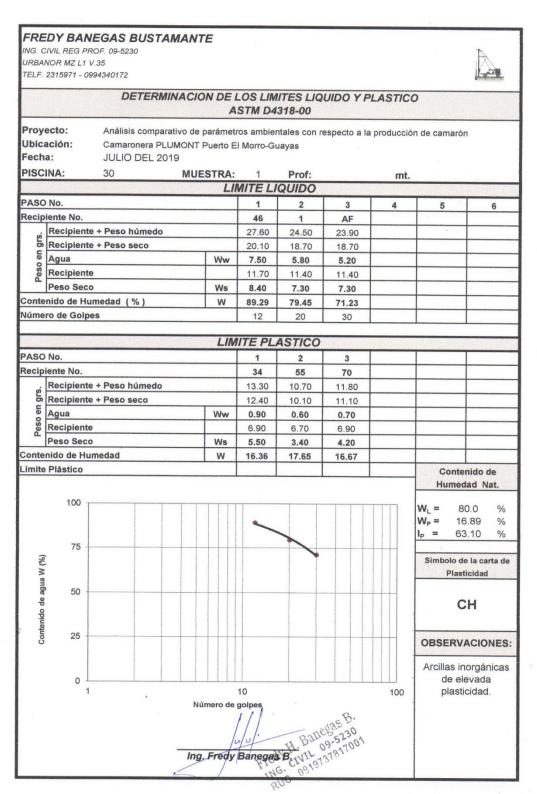
	Camaronera PLU	ativo de parám	SAYO DE PER	ME <i>A</i>	v. 38	REG. PROF. 0. 3; TELF: 23.	15971 - 09		VARIA	BLE			
BICACIÓN:	Camaronera PLU	ativo de parám	SAYO DE PER	MEA	AB				VARIA	BLE			
BICACIÓN:	Camaronera PLU	ativo de parám	etros ambientales con r			ILIDA	D - C/	ARGA V	VARIA	BLE			
BICACIÓN:	Camaronera PLU	ativo de parám	etros ambientales con r										
BICACIÓN:	Camaronera PLU				2010	producci	ón do co	marán			_		
			FLIVIOTTO-GUAVAS		J a la	a producci	on ue car	naron.			CC	CHA:	JULIO DEL 2019
			MUESTI	RA-	M	ATERIAL F	ΔΡΔ ΕΜΙ	DI FAR COM	O RELIENC	IMPEDA		BLE - PISCINA	
			,,,,,		100	MILITALI	AIGA LIVII	LEAN CON	ONLLLLING) HVIF LINE	ILAL	PLE - PISCHVA	30
	Tiempo Real	Tiempo	Altura de										
	nempo near	Relativo	carga (h)		i	Fórmula (ieneral :				G	eometría del	Permeámetro:
	H: m: seg.	H: m: seg.	cm.										
	8:15:00		O DEL 2019	K	=	Lxa	ln. <u>h1</u>		L		Ξ	8	cm
	12:00:00		O DEL 2019										
-	14:00:00	0:00:00	0.002			Axt.	h2		Α			31,1725	cm2
-	40.00.00	13 DE JULIO		100					а		=	2,0106	cm2
	10:00:00	22:00:00	0.004	K	=		Cv. (cm/	seg.)					
					20)°							
-				Dat	tor o	de Labora	aula.						
				T	=	26		Cv	0.8702			l = l angièud	del permeámetro (cm)
					=	0.002		CV	0.0702				del permeámetro (cm2)
				h2	=	0.004							del tubo de carga. (cm2)
				t	=	244800	seg.						lel ensayo. (seg).
													de carga inicial (cm).
													de carga final (cm).
												In = Logarin	
												Cv = Coefien	ite F(temperatura)
L						1							
	Valor de K - c	valculado									1 6		
K =	1.46E-06									Valor	-	- corregido:	
K =	1.406-00	un/seg.							K		=	1.27E-06	cm/seg.


Anexo 27. Resultados de Contenido de Humedad Muestras de Suelo

1 -0.60 8 78.1 5.10 3.00 3.90 11.20 .0.3%	F	ECHA: JULI	O DEL 2019				
1 -0.60 8 78.1 5.10 3.00 3.90 1.20	respecto a la prod	ducción de camarón.	O DEL 2019				
1 -0.60 8 78.1 5.10 3.00 3.90 1.20							
-0.60 8 78.1 5.10 3.00 3.90 1.20	PISCINA -	- 6					
-0.60 8 78.1 5.10 3.00 3.90 1.20							
-0.60 8 78.1 5.10 3.00 3.90 1.20							
8 78.1 5.10 3.00 3.90 1.20							
78.1 5.10 3.00 3.90 1.20							
5.10 3.00 3.90 1.20	-		_				
3.00 3.90 1.20							
3.90 1.20							
1.20							
No. of the second secon							
PISCINA - 7							
1	FISCINA .	•					
-0.40							
5							
32.1							
0.70			1				
1.40							
5.00							
5.70							
.07%							
	DISCINA	20					
4 T	PISCINA -	30					
	1						
JU							
JU 43.6							
JU 43.6 7.40							
JU 43.6 7.40 6.20							
JU 43.6 7.40							
3	0.40 5 12.1 0.70 1.40 0.00 5.70	0.40 5 5 2.1 0.70 1.40 6.00 5.70 07% PISCINA -	0.40 55 5 5 5 5 5 5 5 5				


Anexo 28. Resultados de Porcentaje de Tamiz Muestras de Suelo

		ING. CIV	NEGAS BUST IL REG. PROF. 09 - 5 7. 38; TELF: 231597	230		
	PORCENTAJE	QUE PASA	EL TAMIZ Nº 2	200 AS	TM D 1140 - 00	
					FECHA:	JULIO DEL 2019
ROY	/ECTO: Análisis comparativo de p	arámetros ambi	ientales con resp	ecto a la pr	oducción de camar	ón.
BIC	ACIÓN: Camaronera PLUMONT F	uerto El Morro-	Guayas			
	N-			PISC	INA - 6	
-	Muestra №	1				
	Profundidad	0.0-0.60				
-	Recipiente Nº	8				
Som L	Peso del recipiente	73.90				
_	Peso inicial + recipiente Peso final + recipiente	665.10			1	
- en	Peso final + recipiente	135.60				
80		591.20				
	Peso final Peso final	61.70				
	Peso inicial X 100	10.44				
% F	Pasa Tamiz № 200 = 100% - %Retenido	89.56			1	
				DISC	INA - 7	
N	Λuestra №	1		1 100		
	Profundidad	0.0-0.40				
	Recipiente №	5			 	
	Peso del recipiente	85.00				
2	Peso inicial + recipiente	650.70			 	
B P	Peso final + recipiente	196.30				
0	Peso inicial	565.70			1	
90	Peso final	111.30				
%R	etenido = Peso final Peso inicial × 100	19.67				
% P	Pasa Tamiz № 200 = 100% - %Retenido	80.33				
		00.00				
		property and property		pisci	NA - 30	
N	/luestra №	1		11001	1 1	
	Profundidad	0.0-0.50		*************************		
	Recipiente №	JU				
.	Peso del recipiente	19.60			1	
2 -	Peso inicial + recipiente	587.40			 	
B	Peso final + recipiente	121.40		***************************************		
0	Peso inicial	567.80				
93	Peso final	101.80				
%R	etenido = Peso final × 100	17.93				
% P	Pasa Tamiz № 200 = 100% - %Retenido	82.07				
20000	servaciones:	82.07				A.
O	perador :		VE	ERIFICADO	POR WHY ELERY	Banegas B.


Anexo 29. Resultados de análisis de Consistencia del Suelo Piscina #6

Anexo 30. Resultados de análisis de Consistencia del Suelo Piscina #7

Anexo 31. Resultados de análisis de Consistencia del Suelo Piscina #30

Anexo 32. Datos Estadísticos

Sec. Sec. T. Sec. Sec. T. Sec. Sec. T. Sec. Sec. T. Sec. S	0x-am				ox-pm				temp-am			temp-pm		
1.50		6	7			6	7			6	-		6	7
Section Sect														
40														
Accordance Acc														
Q														
Mathematics														
1.00														
100 100														
Section Sect	2,5	5,9	5,0		14,6	11,3	12,1		29,3	29,1	29,0	31,2	31,6	29,5
10					10,7					29,0			31,0	
10													30,8	
44														
10														
A														
1.22														
1.6					8,0	9,4	7,8							
Math														
10														
1.50														
10														
10														
12											28,8			
241														
18														
MAI														
14.4 3.5 3.3 8.7 9.3 7.8 28.3 28.0 28.1 25.5 28.9 29.2 29.1 10.0 3.1 3.3 3.3 4.4 11.0 5.2 3.0 3.0 28.2 28.4 3.6 29.2 3.1 2.5 3.1													30,3 29.6	
10														
14.4														
2.8	3,4		3,2		8,3	8,4	8,2		29,1	28,2	28,5	28,5	28,6	
1.77 3.8	2,8	3,5	2,0		9,6	10,0	9,3		27,1	27,6	27,6	29,0	29,0	29,0
A2														
A2														
A44														
A22														
3.5							11,4						29,2	
1.5 3.6 3.9 3.6 5.1 8.6 22.0 28.5 28.7 29.1 29.8 29.2 3.1 3.0 3.1 3.3 3.0 8.0 8.6 8.5 22.8 29.9 3.11 29.5 29.8 3.4 3.5 3.0 3.1 3.0 8.0 8.6 8.5 22.5 22.5 22.5 23.1 22.5 22.5 3.6 3.5 3.0 3.0 8.0 8.6 8.5 22.5 22.5 22.5 23.1 22.5 22.5 3.6 3.6 3.6 3.7 22.5 22.5 22.5 22.5 22.5 22.5 22.5 3.6 4.4 3.5 3.0 3.1 29.5 29.9 3.1 22.5 22.5 3.6 4.4 3.5 3.0 3.1 29.5 29.9 3.1 22.5 22.5 22.5 22.5 3.6 4.4 3.5 3.0 3.1 29.5 29.5 29.5 27.5 27.3 27.2 27.5 28.2 28.0 3.5 3.0 1.2 30.5 9.7 30.6 22.7 27.5 27.3 27.2 27.5 28.2 28.0 3.5 3.0 1.2 30.5 9.7 30.6 22.2 27.5 27.3 27.2 27.5 28.2 28.0 3.7 3.4 3.8 4.0 8.4 9.3 27.0 27.2 27.3 27.2 27.5 28.2 28.5 3.0 3.3		3,2	4,0		10,6	10,4	10,4		28,3	27,8	28,4	30,2	29,9	29,6
3.2 3.0 3.1 9.3 9.0 9.1 29.8 27.8 29.9 31.1 29.5 29.1 29.2 23.1 29.6 29.1 29.2 3.1 29.6 29.1 29.2 29.3 29.4 22.1 29.3 29.4 22.1 29.3 29.4 29.2 29.3 29.4 29.2 29.3 29.2 29.3 29.2 29.3 29.2 29.3 29.2 29.2 29.3 29.2 29.2 29.2 29.3 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.3 28.5 28.5 30.0 29.5 28.6 28.6 29.5 29.6 29.5 28.6 28.5 29.6 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 </td <td></td>														
3.6														
3.1 3.2 3.4 7,6 7.2 7.3 27,4 27,1 27,0 28.8 29,7 28.8 29,2 28.9 3.6 3.6 4.6 1.5 8,7 10.1 79.0 27,5 27,3 27,2 28.8 29.2 28.9 3.6 22.2 27,3 27,2 28.8 29.2 22.5 28.8 29.2 22.5 28.8 29.2 22.5 28.2 28.0 22.6 22.5 27.3 27.2 27.3 28.0 22.7 27.3 27.2 27.3 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.2 28.0 19.0 28.0 29.0 28.0 28.2 28.0 28.2 28.0 28.2 28.0 28.2 28.2 28.2 28.2 28.2 28.3 38.3 38.3 38.3 38.3 38.3 38.3 38.3 38.3														
3.4														
3.6														
3.7 3.4 3.8 8.0 8.4 9.3 27.0 27.2 27.3 26.0 27.2 27.3 3.5 2.1 5.0 9.0 8.0 9.5 26.0 26.2 26.7 22.2 27.0 22.2 27.2 28.3 3.3 3.4 3.4 9.8 4.8 10.6 25.6 25.9 22.3 27.4 27.2 28.3 28.3 27.2 27.8 28.3 27.2 27.8 28.3 27.2 28.3 28.3							7,9							
3.5 2,1 5,0 9,0 8,0 9,5 26,0 26,2 26,1 27,0 22,2 27,0 3.4 3,0 5,3 7,4 7,8 12,3 26,6 26,6 26,7 28,5 28,4 28,5 3.6 3,3 3,8 8,1 7,5 7,9 27,1 27,0 27,1 22,6 28,4 28,6 30,4 30,6 30,4 30,6 30,3 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,4 3,4 3,8 3,4 3,8 3,6 4,8 10,6 25,6 25,9 27,6 22,2 28,6 3,2 22,2 28,6 3,2 28,2 28,6 3,2 22,5 26,9 27,6 28,2 28,6 3,2 28,6 3,4 3,4 3,4 3,4 3,1 3,1 3,3														
4,4 3,0 5,3 7,4 7,8 12,3 26,6 26,7 28,5 28,4 29,5 3,6 3,3 3,8 8,1 7,5 7,9 27,1 27,0 27,1 22,6 29,4 29,6 30,3 3,7 3,6 3,3 7,6 7,7 7,5 27,5 27,4 27,8 29,4 29,6 30,3 4,0 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,8 4,8 10,6 25,5 27,6 27,7 27,8 27,7 27,8 27,4 27,8 27,4 27,8 27,4 27,8 27,4 22,5 27,4 22,6 3,4 3,4 3,8 3,4 3,8 3,5 3,7 7,7 7,5 8,6 27,1 22,5 26,9 27,6 28,2 27,3 22,5 25,9 25,7 27,7 4,1 6,2 4,9 9,7 7,4 7,3 25,9 25,7 <td></td>														
3.6 3.3 3.8 8.1 7.5 7.9 27.1 17.0 27.1 22.6 28.2 28.7 3.4 3.4 4.0 9.9 10.4 10.6 27.3 27.4 27.1 27.7 27.8 28.4 29.6 28.3 3.5 3.3 7.6 7.7 7.5 27.5 27.4 27.1 27.7 27.8 28.1 4.0 3.4 3.4 9.8 4.8 10.6 25.5 25.9 26.3 27.2 27.8 27.4 27.2 4.0 3.4 3.8 4.8 10.6 25.5 25.9 26.3 27.8 27.4 27.8 4.2 5.0 5.3 17.2 2.8 2.7 3 25.9 25.9 27.7 27.7 27.7 4.1 6.2 4.9 9.7 7.7 7.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 <td></td>														
3.4 3.4 4.0 9.9 10.4 10.6 27,3 27,4 27,8 29.4 29.6 30.3 3.5 3.5 3.5 3.3 8.40 8.6 4.4 26.1 20.2 20.5 26.2 26.2 26.8 27.2 27.8 28.1 4.2 4.3 5.4 8.8 10.6 25.6 25.9 26.3 27.8 27.4 27.8 42.1 4.2 4.3 5.4 8.3 11.1 10.3 26.6 25.9 27.6 28.2 28.6 3.4 3.8 3.5 7.7 7.75 8.6 27.1 28.1 27.5 26.4 27.2 28.6 27.7 27.7 2.6 28.2 28.6 27.2 2.6 2.7 2.5 8.6 27.1 28.1 27.2 27.6 28.2 28.6 28.2 2.2 2.6 2.2 2.6 2.2 2.6 2.2 2.6 2.2 2.6 2.2 2.6														
3,7 3,6 3,3 7,6 7,7 7,5 27,5 27,1 27,7 27,8 28,1 4,0 3,4 3,4 9,8 4,8 10,6 25,6 25,9 26,3 27,8 27,4 27,8 4,0 3,4 3,4 9,8 4,8 10,6 25,6 25,9 26,3 27,8 27,4 27,8 27,4 27,2 27,4 27,2 28,2 28,6 28,2 28,6 28,2 28,6 28,2 28,6 28,2 28,6 28,2 28,6 28,2 28,6 28,6 27,2 28,6 28,3 28,5 28,6 29,2 28,6 28,1 28,3 28,3 48,4 38,3 38,4 38,3 10,3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
4.0 3,4 3,4 9,8 4,8 10,6 25,6 25,9 26,3 27,8 27,4 22,8 3,4 3,8 3,5 7,7 7,5 8,6 27,1 18,1 27,5 26,4 22,6 22,6 22,6 22,6 22,6 22,6 22,6 22,6 22,6 22,6 22,6 22,7 22,7 22,7 22,9 22,5 25,7 25,8 22,8 22,3 22,5 25,8 28,5 26,1 26,1 26,3 32,7 34,2 25,5 4,9 10.1 7,5 7,9 26,3 28,6 28,9 29,3 25,6 25,6 28,8 32,8 3,2 3,8 4,3 10.3 7,8 10,5 27,1 26,7 22,4 20,9 27,5 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
4.2 4.3 5.4 8.3 11,1 10,3 26,6 26,2 28,9 27,6 28,2 28,6 3.4 3.8 3.5 7,7 7,5 8,6 22,1 22,5 25,9 25,9 25,7 25,9 27,7 25,8 25,8 28,5 26,1 26,3 4,2 4,9 10,1 7,5 7,9 26,3 24,6 24,9 27,5 26,1 26,6 28,8 3,7 5,4 9 10,1 7,5 7,9 26,3 24,6 24,9 27,5 26,1 26,4 26,4 26,4 28,4 3,4 3,1 1,3 1,4 8,4 4,3 10,3 7,8 10,5 27,1 26,0 27,2 26,1 26,4 26,4 26,4 <td>3,5</td> <td>3,5</td> <td>3,3</td> <td></td> <td>8,40</td> <td>8,6</td> <td>4,4</td> <td></td> <td>26,1</td> <td>26,2</td> <td>26,5</td> <td>26,2</td> <td>26,8</td> <td>27,2</td>	3,5	3,5	3,3		8,40	8,6	4,4		26,1	26,2	26,5	26,2	26,8	27,2
3.4 3.8 3.5 7,7 7,5 8.6 27,1 28,1 27,5 26,4 26,4 27,2 4,1 6,2 4,9 9,7 7,4 7,3 25,9 27,7 27,7 27,7 27,7 27,1 4,1 6,2 4,9 9,7 7,4 7,3 25,7 25,8 25,8 26,1 26,3 3,2 25,6 4,9 19,3 25,6 25,8 3,2 26,4 24,9 9,3 25,6 25,8 3,2 26,4 24,9 29,3 25,6 25,8 3,2 28,6 4,2 20,9 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 27,0 22,7 25,1 25,5 25,5 25,5 25,5 25,5 25,5 25,5 25,5 25														
4.2 5.0 5.3 11.2 8.2 7,3 25,9 25,7 25,9 27,7 27,7 27,7 4.1 6,2 4.9 9.7 7,4 7,3 25,7 25,8 25,8 22,8 25,1 26,1 26,3 4.2 5,5 4.9 10.1 7,5 7,9 26,3 24,0 24,9 22,5 26,1 26,6 25,8 3,7 5,4 5,1 8,5 8,4 8,4 27,9 22,4 24,9 22,75 26,1 26,6 25,8 3,3 3,8 4,3 10,3 7,8 10,5 227,1 26,7 27,0 27,4 27,5 26,1 26,4 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1 2														
4.1 6,2 4,9 9,7 7,4 7,3 25,7 25,8 28,5 26,1 26,3 4,2 5,5 4,9 10,1 7,5 7,9 26,3 24,0 2,9 29,3 25,6 28,8 3,7 5,4 5,1 8,50 8,4 8,4 27,9 24,4 24,9 27,5 27,5 26,1 26,4 3,2 3,8 4,8 4,6 10,4 8,7 8,3 25,8 26,2 26,4 27,1 26,0 26,1 27,1 26,0 26,5 26,5 28,4 25,5														
4.2 5,5 4,9 10,1 7,5 7,9 26,3 24,6 24,9 29,3 25,6 25,8 3,7 5,4 5,1 8,50 8,4 8,4 27,9 27,0 27,4 27,5 26,1 26,4 3,1 4,8 4,6 10,4 8,7 8,3 12,8 26,2 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,6 26,4 26,6 26,4 26,6 26,4 26,6 26,4 26,6 26,4 26,4 26,4 26,4 26,4 26,4 26,4 27,7 25,5 35,7 26,0 25,2 25,5 35,4 7 40 8,6 8,9 22,7 26,1 26,8 26,5 27,1 26,4 43,3 38 3,9 8,8 4,7 7,7 25,3 27,5 26,1														
3,7 5,4 5,1 8,50 8,4 8,4 27,9 24,4 24,9 27,5 26,1 26,1 26,1 26,1 26,1 26,2 26,4 27,0 27,4 27,5 27,7 3,1 4,8 4,6 10,4 8,7 8,3 25,8 26,2 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,4 26,6 26,4 26,4 26,6 26,4 26,6 26,2 25,7 26,0 25,2 25,5 28,4 29,1 27,5 26,0 42,4 4,4 4,4 3 8,8 8,6 8,6 8,9 27 26,1 26,8 26,5 27,1 26,0 4,2 4,1 4,3 8,2 7,9 8,3 26,9 29,7 26,4 27,0 26,1 26,1 26,1 26,1 26,1 26,1 26,1 26,1														
3,2 3,8 4,3 10,3 7,8 10,5 27,1 26,7 27,0 27,4 27,5 27,7 3,8 3,2 3,8 4,3 4,6 10,4 8,7 8,3 25,8 26,2 26,4 26,4 26,4 26,4 26,4 26,8 3,8 5,0 4,2 8,0 8,1 8,5 25,7 25,7 25,5 25,7 26,0 25,2 26,1 4,2 4,2 4,6 9,5 10,7 9,6 25,4 25,2 25,5 25,7 26,0 25,2 26,1 3,5 4,7 4,0 8,0 8,6 8,9 27,9 8,3 26,9 29,7 26,4 27,0 26,1 26,4 4,3 3,8 3,9 8,4 7,4 7,7 25,3 27,5 26,1 26,4 27,0 26,1 26,4 4,3 3,8 3,9 8,4 7,4 7,7 25,3 27,5 26,1 27,4 27,9 26,5 5,5 1,6 3,5 0,8 8,2 8,2 7,9 24,7 25,4 25,2 25,4 25,2 25,5 27,7 25,7 5,1 6,3 5,0 8,2 8,2 7,9 24,7 25,4 25,8 26,2 25,9 27,7 25,7 5,1 6,3 5,0 8,2 8,2 7,9 24,7 25,4 25,8 26,2 25,9 27,7 25,7 5,5 6,1 4,3 8,0 7,2 7,3 7,1 7,6 24,7 24,5 24,9 25,7 25,4 25,1 5,5 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 25,9 5,6 9,3 8,3 8,4 24,3 26,0 23,4 24,3 26,2 27,9 29,1 26,4 24,9 25,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 24,9 25,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 24,9 25,5 5,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 24,9 25,5 5,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 26,5 5,5 5,5 5,3 5,1 8,0 8,6 7,9 9,20 9,1 9,3 26,2 25,4 25,6 27,2 29,1 26,4 26,5 5,5 5,5 5,3 5,1 8,0 8,6 7,9 26,2 25,5 25,8 27,9 27,4 27,5 26,9 5,5 5,5 5,3 5,1 8,0 8,6 7,9 9,20 9,1 9,3 26,2 25,5 25,8 27,9 27,4 27,5 26,9 5,5 5,3 5,1 8,0 8,6 8,4 25,7 3,3 26,0 25,7 25,9 27,1 27,5 26,9 5,5 5,3 5,1 8,0 8,6 8,4 25,7 3,3 26,0 25,7 25,9 27,2 27,4 27,5 26,9 5,5 5,3 5,1 8,0 8,6 8,4 8,2 7,3 26,0 25,7 25,9 27,2 27,4 27,5 26,9 5,9 5,3 5,0 8,4 8,8 8,8 8,8 8,8 8,2 2,2 2,2 2,2 2,2 2,2													26,1	
3.8 5,0 4,2 8,0 8,1 8,5 25,7 25,5 25,7 26,0 25,2 25,1 3.5 4,7 4,0 8,0 8,6 8,9 27 26,1 26,8 26,5 27,1 26,0 4.2 4,1 4,3 8,2 7,9 8,3 26,9 29,7 26,4 27,0 26,1 26,8 4.3 3,8 3,9 8,4 7,4 7,7 25,3 27,5 26,1 27,4 27,9 26,9 5,6 5,9 5,3 3,9 8,4 7,4 7,7 25,3 27,5 26,1 27,4 27,9 26,9 5,7 5,5 5,5 5,9 4,3 7,7 7,7 25,3 27,5 26,1 27,4 27,9 22,4 25,8 26,7 23,6 26,1 5,5 5,5 5,9 4,3 7,3 7,4 24,7 25,4 25,8 26,7 23,6 25,1 5,5													27,5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										26,2				
3.5 4.7 4.0 8.0 8.6 8.9 27 26.1 26.8 26.5 27.1 25.0 4.2 4.1 4.3 8.2 7.9 8.3 26.9 29.7 26.4 27.0 26.1 26.4 4.3 3.8 3.9 8.4 7.4 7.7 25.3 27.5 26.1 27.4 27.9 26.9 27.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.1 25.9 27.7 25.7 25.1 25.9 27.7 25.7 25.4 25.8 26.2 25.9 25.6 25.9 25.6 25.9 25.6 29.3 27.3 24.0 23.4 24.3 26.2 25.7 25.4 25.8 25.7 25.4 26.0 25.7 25.4 25.1 25.9 25.6 27.2 29.1 26.4 25.9 25.6 <														
4.2 4,1 4,3 8,2 7,9 8,3 26,9 29,7 26,4 27,0 26,1 26,9 5.6 5.9 5.3 9,1 8,4 8,5 24,3 25,8 26,2 25,9 27,7 25,7 5.1 6,3 5,0 8,2 8,2 7,9 224,7 25,4 25,8 26,7 23,6 26,1 5,2 5,9 4,3 7,3 7,1 7,6 24,7 24,5 24,9 25,7 25,4 25,1 5,5 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 24,4 26,0 25,3 25,1 5,5 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 24,4 26,0 25,3 25,1 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,3 24,3 26,2 24,4 26,0 25,3 25,6 25,6 <td></td>														
4,3 3,8 3,9 8,4 7,4 7,7 25,3 27,5 26,1 27,4 27,9 26,9 5,6 5,9 5,3 9,1 8,4 8,5 24,7 25,8 26,2 25,9 27,7 25,7 5,1 6,3 5,0 8,2 8,2 7,9 24,7 25,4 25,8 26,7 23,6 26,1 5,5 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 24,4 29,9 5,5 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 24,4 24,9 5,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 5,8 5,9 6,9 9,20 9,1 9,3 26,2 25,4 26,0 27,1 27,5 26,9 5,8 5,9 6,9 9,20 9,1 9,3														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
5,2 5,9 4,3 7,3 7,1 7,6 24,7 24,9 25,7 25,4 25,1 55 6,1 4,3 8,0 7,2 7,3 24,0 23,4 24,3 26,2 24,4 24,9 5,5 5,5 5,5 5,5 6,3 5,9 8,5 9,7 9,5 24,3 23,9 24,4 26,0 25,3 25,2 25,8 5,5 6,3 5,9 8,5 9,7 9,5 24,3 24,7 25,6 27,2 29,1 26,4 5,8 5,9 6,9 9,20 9,1 9,3 26,2 25,4 26,0 27,1 27,5 26,9 5,5 5,5 5,3 5,1 8,0 8,6 7,9 26,2 25,5 25,8 27,9 27,4 27,5 5,9 5,3 5,0 8,4 8,2 7,3 26,0 25,7 25,9 27,2 27,7 27,7 27,7 27,7 27,7 27,7 27,7 27,7 2	5,6					8,4							27,7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,2													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
5,8 5,9 6,9 9,20 9,1 9,3 26,2 25,4 26,0 27,1 27,5 26,9 5,5 5,3 5,1 8,0 8,6 8,4 25,7 25,3 25,8 27,9 27,0 26,4 5,9 5,3 5,0 8,4 8,2 7,3 26,0 25,7 25,9 22,72 27,7 22,7 6,1 6,2 4,9 7,6 7,4 7,3 26,0 25,7 25,9 22,72 27,7 22,7 5,1 5,5 4,9 7,7 7,2 7,4 24,2 24,6 24,9 25,6 25,6 25,8 25,8 25,9 25,6 25,6 25,8 25,8 25,9 25,5 25,5 25,8 25,9 25,6 25,6 25,6 25,6 25,6 25,6 25,6 25,6 25,6 25,6 25,8 25,9 5,5 5,9 5,6 8,4 8,3 8,2 25,2														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,8	5,9	6,9		9,20	9,1	9,3		26,2	25,4	26,0	27,1	27,5	26,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5	5,3	5,1		8,0	8,6	7,9		26,2	25,5	25,8	27,9	27,4	27,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,9	5,0	4,2			8,6				25,3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									26,0	25,7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								 						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,9	6,3	5,9		9,1	9,7	9,5			24,7	25,6	27,7	29,1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,7	5,9			9,2		9,3			25,4	26,0		27,5	26,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													27,1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
4,6 4,5 3,9 8,3 8,4 8,2 29,1 28,2 28,5 28,5 28,6 28,8 4,0 4,4 3,5 8,7 9,8 7,9 27,5 27,3 27,2 27,5 28,2 28,0 3,5 4,7 4,0 8,0 8,6 8,9 26,5 26,1 26,8 27,0 27,1 26,0 3,8 3,7 3,8 9,1 8,4 9,3 24,7 24,8 25,0 25,9 25,8 25,8 3,6 3,7 4,0 7,9 10,8 8,5 24,6 24,9 25,0 24,8 26,1 25,3 3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5	4,2	4,1	4,3		8,2	7,9	8,3		26,9	29,7	26,4	27,0	26,1	26,4
4,0 4,4 3,5 8,7 9,8 7,9 27,5 27,3 27,2 27,5 28,2 28,0 3,5 4,7 4,0 8,0 8,6 8,9 26,5 26,1 26,8 27,0 27,1 26,0 3,8 3,7 3,8 9,1 8,4 9,3 24,7 24,8 25,0 25,9 25,8 25,8 3,6 3,7 4,0 7,9 10,8 8,5 24,6 24,9 25,0 24,8 26,1 25,3 3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5														
3,5 4,7 4,0 8,0 8,6 8,9 26,5 26,1 26,8 27,0 27,1 26,0 3,8 3,7 3,8 9,1 8,4 9,3 24,7 24,8 25,0 25,9 25,8 25,8 3,6 3,7 4,0 7,9 10,8 8,5 24,6 24,9 25,0 24,8 26,1 25,3 3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5				-				_						
3,8 3,7 3,8 9,1 8,4 9,3 24,7 24,8 25,0 25,9 25,8 25,8 3,6 3,7 4,0 7,9 10,8 8,5 24,6 24,9 25,0 24,8 26,1 25,3 3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5				-										
3,6 3,7 4,0 7,9 10,8 8,5 24,6 24,9 25,0 24,8 26,1 25,3 3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5													27,1	
3,6 4,8 4,5 8,0 8,6 9,1 26,5 26,1 26,8 27,3 27,1 26,5														
	3,6		4,5		8,0						26,8		27,1	

Anexo 33. Grafico estadístico Variaciones de Oxígeno Disuelto

Anexo 34 Análisis de Varianza ANDEVA Oxigeno (am)

Variable	N	R²		R² A	Aj	CV				
Oxígeno disuelto (am)	300	0.02		0.01		23.85				
Cuadro de Análisis	de la Va	rianza (SC	tipo III))						
F.V.		SC	gl	CM	F	p-valor				
Modelo		4.85	2	2.43	2.35	0.0972				
Piscina / Estanque		4.85	2	2.43	2.35	0.0972				
Error		306.79	297	1.03						
Total		311.65	299							
Test: Duncan Alfa:	=0.05									
Error: 1.0330 gl: 29	97									
Piscina / Estanque	Medias	n	E.E							
-	4.43	100	0.1		Α					
#7	4.24	100	0.1		Α	В				
#30	4.12	100	0.1			В				
Medias con una letra común no son significativamente diferentes (p > 0.05)										

Anexo 35. Análisis de Varianza ANDEVA Oxígeno Disuelto (pm)

Variable	N	R²	R² Aj	CV							
Oxígeno	300	0.01	0.01	15.72							
Disuelto (pm)											
Cuadro de Aná	lisis de la Va	rianza (SC ti	po III)								
F.V.	SC	gl	CM	F	p-valor						
Modelo	7.7	2	3.85	1.94	0.1462						
Piscina /	7.7	2	3.85	1.94	0.1462						
Estanque											
Error	590.9	297	1.99								
Total	598.6	299									
Test: Duncan A	Test: Duncan Alfa=0.05										
Error: 1.9896 g	l: 297										
Piscina /	Medias	n	E.E.								
Estanque											
#30	9.2	100	0.14	Α							
#7	8.87	100	0.14	Α							
#6	8.84	100	0.14	Α							
Medias con una	a letra comúr	no son sign	ificativament	e diferentes	(p > 0.05)						

Anexo 36. Análisis de Varianza ANDEVA Temperatura (am)

Variable	N	R²	R² Aj	CV								
Temperatura	300	1.90E-03	0	6.32								
(am)												
Cuadro de Aná	Cuadro de Análisis de la Varianza (SC tipo III)											
F.V.	SC	gl	CM	F	p-valor							
Modelo	1.63	2	0.81	0.28	0.7581							
Piscina /	1.63	2	0.81	0.28	0.7581							
Estanque												
Error	871.14	297	2.93									
Total	872.77	299										
Test: Duncan A	Alfa=0.05											
Error: 2.9331 g	l: 297											
Piscina /	Medias	n	E.E.									
Estanque												
#7 ·	27.18	100	0.17	Α								
#30	27.14	100	0.17	Α								
#6	27.01	100	0.17	Α								
Medias con una	a letra comú	n no son sigr	nificativamer	nte diferentes	s (p > 0.05)							

Anexo 37. Análisis de Varianza ANDEVA Temperatura (pm)

		- 2	-2		
Variable	N	R ²	R² Aj	CV	
Temperatura	300	0.01	0.01	7.13	
(pm)					
Cuadro de Anál	isis de la Var	ianza (SC tip	o III)		
F.V.	SC	gl	CM	F	p-valor
Modelo	14.51	2	7.25	1.77	0.1727
Piscina /	14.51	2	7.25	1.77	0.1727
Estanque					
Error	1219.3	297	4.11		
Total	1233.81	299			
Test: Duncan Alfa=0.05					
Error: 4.1054 gl: 297					
Piscina /	Medias	n	E.E.		
Estanque					
#30	28.69	100	0.2	Α	
#6	28.4	100	0.2	Α	
#7	28.15	100	0.2	Α	
Medias con una letra común no son significativamente diferentes (p > 0.05)					

Anexo 38. Análisis de Varianza ANDEVA Turbidez (cm)

Variable	N	R ²	R² Aj	CV	_
Turbidez (cm)	27	0.04	0	11.25	
Cuadro de Anál	isis de la Var	ianza (SC tip	o III)		
F.V.	SC	gl	CM	F	p-valor
Modelo	22.22	2	11.11	0.51	0.6096
Piscina /	22.22	2	11.11	0.51	0.6096
Estanque					
Error	527.78	24	21.99		
Total	550	26			
Test: Duncan Alfa=0.05					
Error: 21.9907 gl: 24					
Piscina /	Medias	n	E.E.		
Estanque					
#6	42.78	9	1.56	Α	
#30	41.67	9	1.56	Α	
#7	40.56	9	1.56	Α	
Medias con una letra común no son significativamente diferentes (p > 0.05)					

Anexo 39. Análisis de Varianza ANDEVA Salinidad (ppm)

Variable	N	R ²	R² Aj	CV	
Salinidad	27	0.03	0	3.42	
(ppm)					
Cuadro de Anál	isis de la Va	rianza (SC ti _l	po III)		
F.V.	SC	gl	CM	F	p-valor
Modelo	0.52	2	0.26	0.34	0.7141
Piscina /	0.52	2	0.26	0.34	0.7141
Estanque					
Error	18.22	24	0.76		
Total	18.74	26			
Test: Duncan Alfa=0.05					
Error: 0.7593 gl: 24					
Piscina /	Medias	n	E.E.		
Estanque					
#30	25.67	9	0.29	Α	
#6	25.44	9	0.29	Α	
#7	25.33	9	0.29	Α	
Medias con una letra común no son significativamente diferentes (p > 0.05)					

Anexo 40. Estadística Descriptiva resumen de medidas

Piscina / Estanque	Variable	n	Media	D.E.	CV
#6	Oxígeno Disuelto (am)	100	4.43	1.12	25.22
#6	Oxígeno Disuelto (pm)	100	8.84	1.3	14.69
#6	Temperatura (am)	100	27.01	1.77	6.54
#6	Temperatura (pm)	100	28.4	2.04	7.19
#7	Oxígeno Disuelto (am)	100	4.24	0.9	21.23
#7	Oxígeno Disuelto (pm)	100	8.87	1.49	16.8
#7	Temperatura (am)	100	27.18	1.67	6.14
#7	Temperatura (pm)	100	28.15	1.93	6.85
#30	Oxígeno Disuelto (am)	100	4.12	1.02	24.8
#30	Oxígeno Disuelto (pm)	100	9.2	1.44	15.61
#30	Temperatura (am)	100	27.14	1.7	6.27
#30	Temperatura (pm)	100	28.69	2.1	7.33

Anexo 41. Análisis de Componentes Principales

Análisis de componentes principales				
Datos estandarizados				
Casos leídos	300			
Casos omitidos	0			
Variables de clasificación				

Piscina / Estanque Autovalores

Lambda	Valor	Proporción	Proporción Acumulada
1	2.66	0.67	0.67
2	1.34	0.33	1
3	0	0	1
4	0	0	1

Autovectores

Variables Oxígeno Disuelto (am)	e1 -0.58	e2 -0.26	
Oxígeno Disuelto (pm)	0.59	-0.25	
Temperatura (am)	0.38	0.68	
Temperatura (pm)	0.41	-0.64	